mdp.py 56.7 KB
Newer Older
Steven Cordwell's avatar
Steven Cordwell committed
1
# -*- coding: utf-8 -*-
2
3
"""Markov Decision Process (MDP) Toolbox: ``mdp`` module
=====================================================
4

5
6
The ``mdp`` module provides classes for the resolution of descrete-time Markov
Decision Processes.
Steven Cordwell's avatar
Steven Cordwell committed
7

Steven Cordwell's avatar
Steven Cordwell committed
8
9
10
11
12
Available classes
-----------------
MDP
    Base Markov decision process class
FiniteHorizon
Steven Cordwell's avatar
Steven Cordwell committed
13
    Backwards induction finite horizon MDP
Steven Cordwell's avatar
Steven Cordwell committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
LP
    Linear programming MDP
PolicyIteration
    Policy iteration MDP
PolicyIterationModified
    Modified policy iteration MDP
QLearning
    Q-learning MDP
RelativeValueIteration
    Relative value iteration MDP
ValueIteration
    Value iteration MDP
ValueIterationGS
    Gauss-Seidel value iteration MDP
Steven Cordwell's avatar
Steven Cordwell committed
28
29
30

"""

31
32
# Copyright (c) 2011-2013 Steven A. W. Cordwell
# Copyright (c) 2009 INRA
Steven Cordwell's avatar
Steven Cordwell committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# 
# All rights reserved.
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 
#   * Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#   * Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#   * Neither the name of the <ORGANIZATION> nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
# 
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

Steven Cordwell's avatar
Steven Cordwell committed
60
61
62
from math import ceil, log, sqrt
from time import time

63
from numpy import absolute, array, empty, mean, mod, multiply, ones, zeros
64
from numpy.random import randint, random
Steven Cordwell's avatar
Steven Cordwell committed
65
from scipy.sparse import csr_matrix as sparse
Steven Cordwell's avatar
Steven Cordwell committed
66

Steven Cordwell's avatar
Steven Cordwell committed
67
from .util import check, getSpan
68

Steven Cordwell's avatar
Steven Cordwell committed
69
70
71
72
73
74
75
76
MSG_STOP_MAX_ITER = "Iterating stopped due to maximum number of iterations " \
    "condition."
MSG_STOP_EPSILON_OPTIMAL_POLICY = "Iterating stopped, epsilon-optimal " \
    "policy found."
MSG_STOP_EPSILON_OPTIMAL_VALUE = "Iterating stopped, epsilon-optimal value " \
    "function found."
MSG_STOP_UNCHANGING_POLICY = "Iterating stopped, unchanging policy found."

Steven Cordwell's avatar
Steven Cordwell committed
77
class MDP(object):
78
    
Steven Cordwell's avatar
Steven Cordwell committed
79
80
    """A Markov Decision Problem.
    
Steven Cordwell's avatar
Steven Cordwell committed
81
    Let ``S`` = the number of states, and ``A`` = the number of acions.
82
    
Steven Cordwell's avatar
Steven Cordwell committed
83
84
85
    Parameters
    ----------
    transitions : array
86
        Transition probability matrices. These can be defined in a variety of 
Steven Cordwell's avatar
Steven Cordwell committed
87
        ways. The simplest is a numpy array that has the shape ``(A, S, S)``,
88
        though there are other possibilities. It can be a tuple or list or
Steven Cordwell's avatar
Steven Cordwell committed
89
90
91
92
93
94
95
        numpy object array of length ``A``, where each element contains a numpy
        array or matrix that has the shape ``(S, S)``. This "list of matrices"
        form is useful when the transition matrices are sparse as
        ``scipy.sparse.csr_matrix`` matrices can be used. In summary, each
        action's transition matrix must be indexable like ``transitions[a]``
        where ``a`` ∈ {0, 1...A-1}, and ``transitions[a]`` returns an ``S`` ×
        ``S`` array-like object.
Steven Cordwell's avatar
Steven Cordwell committed
96
    reward : array
97
98
        Reward matrices or vectors. Like the transition matrices, these can
        also be defined in a variety of ways. Again the simplest is a numpy
Steven Cordwell's avatar
Steven Cordwell committed
99
100
101
102
103
104
105
106
        array that has the shape ``(S, A)``, ``(S,)`` or ``(A, S, S)``. A list
        of lists can be used, where each inner list has length ``S`` and the
        outer list has length ``A``. A list of numpy arrays is possible where
        each inner array can be of the shape ``(S,)``, ``(S, 1)``, ``(1, S)``
        or ``(S, S)``. Also ``scipy.sparse.csr_matrix`` can be used instead of
        numpy arrays. In addition, the outer list can be replaced by any object
        that can be indexed like ``reward[a]`` such as a tuple or numpy object
        array of length ``A``.
107
108
109
110
    discount : float
        Discount factor. The per time-step discount factor on future rewards.
        Valid values are greater than 0 upto and including 1. If the discount
        factor is 1, then convergence is cannot be assumed and a warning will
Steven Cordwell's avatar
Steven Cordwell committed
111
112
        be displayed. Subclasses of ``MDP`` may pass ``None`` in the case where
        the algorithm does not use a discount factor.
113
114
115
116
    epsilon : float
        Stopping criterion. The maximum change in the value function at each
        iteration is compared against ``epsilon``. Once the change falls below
        this value, then the value function is considered to have converged to
Steven Cordwell's avatar
Steven Cordwell committed
117
118
119
        the optimal value function. Subclasses of ``MDP`` may pass ``None`` in
        the case where the algorithm does not use an epsilon-optimal stopping
        criterion.
120
121
122
    max_iter : int
        Maximum number of iterations. The algorithm will be terminated once
        this many iterations have elapsed. This must be greater than 0 if
Steven Cordwell's avatar
Steven Cordwell committed
123
124
        specified. Subclasses of ``MDP`` may pass ``None`` in the case where
        the algorithm does not use a maximum number of iterations.
Steven Cordwell's avatar
Steven Cordwell committed
125
126
127
128
    
    Attributes
    ----------
    P : array
129
        Transition probability matrices.
Steven Cordwell's avatar
Steven Cordwell committed
130
    R : array
131
132
        Reward vectors.
    V : tuple
Steven Cordwell's avatar
Steven Cordwell committed
133
134
135
        The optimal value function. Each element is a float corresponding to
        the expected value of being in that state assuming the optimal policy
        is followed.
Steven Cordwell's avatar
Steven Cordwell committed
136
    discount : float
137
        The discount rate on future rewards.
Steven Cordwell's avatar
Steven Cordwell committed
138
    max_iter : int
139
140
141
        The maximum number of iterations.
    policy : tuple
        The optimal policy.
Steven Cordwell's avatar
Steven Cordwell committed
142
    time : float
143
144
        The time used to converge to the optimal policy.
    verbose : boolean
Steven Cordwell's avatar
Steven Cordwell committed
145
        Whether verbose output should be displayed or not.
Steven Cordwell's avatar
Steven Cordwell committed
146
147
148
    
    Methods
    -------
149
    run
Steven Cordwell's avatar
Steven Cordwell committed
150
        Implemented in child classes as the main algorithm loop. Raises an
151
        exception if it has not been overridden.
Steven Cordwell's avatar
Steven Cordwell committed
152
153
154
155
156
157
    setSilent
        Turn the verbosity off
    setVerbose
        Turn the verbosity on
    
    """
Steven Cordwell's avatar
Steven Cordwell committed
158
    
159
    def __init__(self, transitions, reward, discount, epsilon, max_iter):
160
        # Initialise a MDP based on the input parameters.
161
        
Steven Cordwell's avatar
Steven Cordwell committed
162
163
        # if the discount is None then the algorithm is assumed to not use it
        # in its computations
164
165
166
167
        if discount is not None:
            self.discount = float(discount)
            assert 0.0 < self.discount <= 1.0, "Discount rate must be in ]0; 1]"
            if self.discount == 1:
Steven Cordwell's avatar
Steven Cordwell committed
168
                print("WARNING: check conditions of convergence. With no "
Steven Cordwell's avatar
Steven Cordwell committed
169
                      "discount, convergence can not be assumed.")
Steven Cordwell's avatar
Steven Cordwell committed
170
171
        # if the max_iter is None then the algorithm is assumed to not use it
        # in its computations
172
173
174
175
        if max_iter is not None:
            self.max_iter = int(max_iter)
            assert self.max_iter > 0, "The maximum number of iterations " \
                                      "must be greater than 0."
Steven Cordwell's avatar
Steven Cordwell committed
176
        # check that epsilon is something sane
177
178
179
        if epsilon is not None:
            self.epsilon = float(epsilon)
            assert self.epsilon > 0, "Epsilon must be greater than 0."
Steven Cordwell's avatar
Steven Cordwell committed
180
181
182
183
        # we run a check on P and R to make sure they are describing an MDP. If
        # an exception isn't raised then they are assumed to be correct.
        check(transitions, reward)
        # computePR will assign the variables self.S, self.A, self.P and self.R
184
        self._computePR(transitions, reward)
Steven Cordwell's avatar
Steven Cordwell committed
185
186
187
188
        # the verbosity is by default turned off
        self.verbose = False
        # Initially the time taken to perform the computations is set to None
        self.time = None
189
190
        # set the initial iteration count to zero
        self.iter = 0
Steven Cordwell's avatar
Steven Cordwell committed
191
        # V should be stored as a vector ie shape of (S,) or (1, S)
Steven Cordwell's avatar
Steven Cordwell committed
192
        self.V = None
Steven Cordwell's avatar
Steven Cordwell committed
193
        # policy can also be stored as a vector
Steven Cordwell's avatar
Steven Cordwell committed
194
        self.policy = None
Steven Cordwell's avatar
Steven Cordwell committed
195
    
196
197
198
199
200
201
    def __repr__(self):
        P_repr = "P: \n"
        R_repr = "R: \n"
        for aa in range(self.A):
            P_repr += repr(self.P[aa]) + "\n"
            R_repr += repr(self.R[aa]) + "\n"
202
        return(P_repr + "\n" + R_repr)
203
    
204
    def _bellmanOperator(self, V=None):
Steven Cordwell's avatar
Steven Cordwell committed
205
        # Apply the Bellman operator on the value function.
206
        # 
Steven Cordwell's avatar
Steven Cordwell committed
207
        # Updates the value function and the Vprev-improving policy.
208
        # 
Steven Cordwell's avatar
Steven Cordwell committed
209
210
211
212
        # Returns: (policy, value), tuple of new policy and its value
        #
        # If V hasn't been sent into the method, then we assume to be working
        # on the objects V attribute
213
214
        if V is None:
            # this V should be a reference to the data rather than a copy
215
216
            V = self.V
        else:
Steven Cordwell's avatar
Steven Cordwell committed
217
            # make sure the user supplied V is of the right shape
218
            try:
219
220
                assert V.shape in ((self.S,), (1, self.S)), "V is not the " \
                    "right shape (Bellman operator)."
221
            except AttributeError:
222
                raise TypeError("V must be a numpy array or matrix.")
223
224
225
226
        # Looping through each action the the Q-value matrix is calculated.
        # P and V can be any object that supports indexing, so it is important
        # that you know they define a valid MDP before calling the
        # _bellmanOperator method. Otherwise the results will be meaningless.
Steven Cordwell's avatar
Steven Cordwell committed
227
        Q = empty((self.A, self.S))
Steven Cordwell's avatar
Steven Cordwell committed
228
        for aa in range(self.A):
Steven Cordwell's avatar
Steven Cordwell committed
229
            Q[aa] = self.R[aa] + self.discount * self.P[aa].dot(V)
Steven Cordwell's avatar
Steven Cordwell committed
230
        # Get the policy and value, for now it is being returned but...
231
        # Which way is better?
232
        # 1. Return, (policy, value)
233
        return (Q.argmax(axis=0), Q.max(axis=0))
Steven Cordwell's avatar
Steven Cordwell committed
234
235
        # 2. update self.policy and self.V directly
        # self.V = Q.max(axis=1)
236
        # self.policy = Q.argmax(axis=1)
Steven Cordwell's avatar
Steven Cordwell committed
237
    
238
239
240
241
242
243
244
245
246
247
248
249
    def _computeP(self, P):
        # Set self.P as a tuple of length A, with each element storing an S×S
        # matrix.
        self.A = len(P)
        try:
            if P.ndim == 3:
                self.S = P.shape[1]
            else:
               self.S = P[0].shape[0]
        except AttributeError:
            self.S = P[0].shape[0]
        # convert P to a tuple of numpy arrays
250
        self.P = tuple(P[aa] for aa in range(self.A))
251
    
252
    def _computePR(self, P, R):
Steven Cordwell's avatar
Steven Cordwell committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        # Compute the reward for the system in one state chosing an action.
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
        #    P(SxSxA)  = transition matrix 
        #        P could be an array with 3 dimensions or  a cell array (1xA), 
        #        each cell containing a matrix (SxS) possibly sparse
        #    R(SxSxA) or (SxA) = reward matrix
        #        R could be an array with 3 dimensions (SxSxA) or  a cell array 
        #        (1xA), each cell containing a sparse matrix (SxS) or a 2D 
        #        array(SxA) possibly sparse  
        # Evaluation
        # ----------
        #    PR(SxA)   = reward matrix
        #
268
        # We assume that P and R define a MDP i,e. assumption is that
Steven Cordwell's avatar
Steven Cordwell committed
269
        # check(P, R) has already been run and doesn't fail.
270
        #
271
272
        # First compute store P, S, and A
        self._computeP(P)
Steven Cordwell's avatar
Steven Cordwell committed
273
274
        # Set self.R as a tuple of length A, with each element storing an 1×S
        # vector.
275
        try:
276
277
            if R.ndim == 1:
                r = array(R).reshape(self.S)
278
                self.R = tuple(r for aa in range(self.A))
279
            elif R.ndim == 2:
280
281
                self.R = tuple(array(R[:, aa]).reshape(self.S)
                                for aa in range(self.A))
Steven Cordwell's avatar
Steven Cordwell committed
282
            else:
283
284
                self.R = tuple(multiply(P[aa], R[aa]).sum(1).reshape(self.S)
                                for aa in range(self.A))
285
        except AttributeError:
286
            if len(R) == self.A:
287
288
                self.R = tuple(multiply(P[aa], R[aa]).sum(1).reshape(self.S)
                                for aa in range(self.A))
289
290
            else:
                r = array(R).reshape(self.S)
291
                self.R = tuple(r for aa in range(self.A))
292
    
293
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
294
        # Raise error because child classes should implement this function.
295
        raise NotImplementedError("You should create a run() method.")
Steven Cordwell's avatar
Steven Cordwell committed
296
    
Steven Cordwell's avatar
Steven Cordwell committed
297
    def setSilent(self):
298
        """Set the MDP algorithm to silent mode."""
Steven Cordwell's avatar
Steven Cordwell committed
299
300
301
        self.verbose = False
    
    def setVerbose(self):
302
        """Set the MDP algorithm to verbose mode."""
Steven Cordwell's avatar
Steven Cordwell committed
303
        self.verbose = True
Steven Cordwell's avatar
Steven Cordwell committed
304
305

class FiniteHorizon(MDP):
306
    
Steven Cordwell's avatar
Steven Cordwell committed
307
    """A MDP solved using the finite-horizon backwards induction algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
308
    
Steven Cordwell's avatar
Steven Cordwell committed
309
310
    Parameters
    ----------
311
312
313
314
315
316
317
318
319
    transitions : array
        Transition probability matrices. See the documentation for the ``MDP``
        class for details.
    reward : array
        Reward matrices or vectors. See the documentation for the ``MDP`` class
        for details.
    discount : float
        Discount factor. See the documentation for the ``MDP`` class for
        details.
Steven Cordwell's avatar
Steven Cordwell committed
320
321
322
323
    N : int
        Number of periods. Must be greater than 0.
    h : array, optional
        Terminal reward. Default: a vector of zeros.
Steven Cordwell's avatar
Steven Cordwell committed
324
    
Steven Cordwell's avatar
Steven Cordwell committed
325
326
327
328
    Data Attributes
    ---------------
    V : array 
        Optimal value function. Shape = (S, N+1). ``V[:, n]`` = optimal value
Steven Cordwell's avatar
Steven Cordwell committed
329
        function at stage ``n`` with stage in {0, 1...N-1}. ``V[:, N]`` value
Steven Cordwell's avatar
Steven Cordwell committed
330
331
332
        function for terminal stage. 
    policy : array
        Optimal policy. ``policy[:, n]`` = optimal policy at stage ``n`` with
Steven Cordwell's avatar
Steven Cordwell committed
333
        stage in {0, 1...N}. ``policy[:, N]`` = policy for stage ``N``.
Steven Cordwell's avatar
Steven Cordwell committed
334
335
    time : float
        used CPU time
Steven Cordwell's avatar
Steven Cordwell committed
336
337
338
339
  
    Notes
    -----
    In verbose mode, displays the current stage and policy transpose.
340
    
Steven Cordwell's avatar
Steven Cordwell committed
341
342
    Examples
    --------
343
344
345
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.forest()
    >>> fh = mdptoolbox.mdp.FiniteHorizon(P, R, 0.9, 3)
346
    >>> fh.run()
Steven Cordwell's avatar
Steven Cordwell committed
347
348
349
350
351
352
353
354
    >>> fh.V
    array([[ 2.6973,  0.81  ,  0.    ,  0.    ],
           [ 5.9373,  3.24  ,  1.    ,  0.    ],
           [ 9.9373,  7.24  ,  4.    ,  0.    ]])
    >>> fh.policy
    array([[0, 0, 0],
           [0, 0, 1],
           [0, 0, 0]])
355
    
Steven Cordwell's avatar
Steven Cordwell committed
356
    """
Steven Cordwell's avatar
Steven Cordwell committed
357

Steven Cordwell's avatar
Steven Cordwell committed
358
    def __init__(self, transitions, reward, discount, N, h=None):
359
        # Initialise a finite horizon MDP.
360
        self.N = int(N)
Steven Cordwell's avatar
Steven Cordwell committed
361
        assert self.N > 0, "N must be greater than 0."
Steven Cordwell's avatar
Steven Cordwell committed
362
        # Initialise the base class
363
        MDP.__init__(self, transitions, reward, discount, None, None)
Steven Cordwell's avatar
Steven Cordwell committed
364
365
        # remove the iteration counter, it is not meaningful for backwards
        # induction
366
        del self.iter
Steven Cordwell's avatar
Steven Cordwell committed
367
        # There are value vectors for each time step up to the horizon
368
        self.V = zeros((self.S, N + 1))
Steven Cordwell's avatar
Steven Cordwell committed
369
370
371
372
373
        # There are policy vectors for each time step before the horizon, when
        # we reach the horizon we don't need to make decisions anymore.
        self.policy = empty((self.S, N), dtype=int)
        # Set the reward for the final transition to h, if specified.
        if h is not None:
374
            self.V[:, N] = h
375
        # Call the iteration method
376
        #self.run()
377
        
378
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
379
        # Run the finite horizon algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
380
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
381
        # loop through each time period
382
        for n in range(self.N):
Steven Cordwell's avatar
Steven Cordwell committed
383
            W, X = self._bellmanOperator(self.V[:, self.N - n])
Steven Cordwell's avatar
Steven Cordwell committed
384
385
386
            stage = self.N - n - 1
            self.V[:, stage] = X
            self.policy[:, stage] = W
Steven Cordwell's avatar
Steven Cordwell committed
387
            if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
388
389
                print(("stage: %s, policy: %s") % (
                    stage, self.policy[:, stage].tolist()))
Steven Cordwell's avatar
Steven Cordwell committed
390
        # update time spent running
Steven Cordwell's avatar
Steven Cordwell committed
391
        self.time = time() - self.time
Steven Cordwell's avatar
Steven Cordwell committed
392
393
        # After this we could create a tuple of tuples for the values and 
        # policies.
Steven Cordwell's avatar
Steven Cordwell committed
394
395
396
        #self.V = tuple(tuple(self.V[:, n].tolist()) for n in range(self.N))
        #self.policy = tuple(tuple(self.policy[:, n].tolist())
        #                    for n in range(self.N))
Steven Cordwell's avatar
Steven Cordwell committed
397
398

class LP(MDP):
399
    
400
    """A discounted MDP soloved using linear programming.
Steven Cordwell's avatar
Steven Cordwell committed
401
402
    
    This class requires the Python ``cvxopt`` module to be installed.
Steven Cordwell's avatar
Steven Cordwell committed
403
404
405

    Arguments
    ---------
406
407
408
409
410
411
412
413
414
    transitions : array
        Transition probability matrices. See the documentation for the ``MDP``
        class for details.
    reward : array
        Reward matrices or vectors. See the documentation for the ``MDP`` class
        for details.
    discount : float
        Discount factor. See the documentation for the ``MDP`` class for
        details.
Steven Cordwell's avatar
Steven Cordwell committed
415
416
    h : array, optional
        Terminal reward. Default: a vector of zeros.
Steven Cordwell's avatar
Steven Cordwell committed
417
    
Steven Cordwell's avatar
Steven Cordwell committed
418
419
420
421
422
423
424
425
    Data Attributes
    ---------------
    V : tuple
        optimal values
    policy : tuple
        optimal policy
    time : float
        used CPU time
Steven Cordwell's avatar
Steven Cordwell committed
426
427
428
    
    Examples
    --------
429
430
431
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.forest()
    >>> lp = mdptoolbox.mdp.LP(P, R, 0.9)
432
    >>> lp.run()
433
    
Steven Cordwell's avatar
Steven Cordwell committed
434
    """
Steven Cordwell's avatar
Steven Cordwell committed
435

Steven Cordwell's avatar
Steven Cordwell committed
436
    def __init__(self, transitions, reward, discount):
437
        # Initialise a linear programming MDP.
Steven Cordwell's avatar
Steven Cordwell committed
438
        # import some functions from cvxopt and set them as object methods
Steven Cordwell's avatar
Steven Cordwell committed
439
440
        try:
            from cvxopt import matrix, solvers
441
442
            self._linprog = solvers.lp
            self._cvxmat = matrix
Steven Cordwell's avatar
Steven Cordwell committed
443
        except ImportError:
444
445
            raise ImportError("The python module cvxopt is required to use "
                              "linear programming functionality.")
Steven Cordwell's avatar
Steven Cordwell committed
446
447
        # we also need diagonal matrices, and using a sparse one may be more
        # memory efficient
Steven Cordwell's avatar
Steven Cordwell committed
448
        from scipy.sparse import eye as speye
449
        self._speye = speye
Steven Cordwell's avatar
Steven Cordwell committed
450
        # initialise the MDP. epsilon and max_iter are not needed
451
        MDP.__init__(self, transitions, reward, discount, None, None)
Steven Cordwell's avatar
Steven Cordwell committed
452
        # Set the cvxopt solver to be quiet by default, but ...
453
        # this doesn't do what I want it to do c.f. issue #3
454
455
        if not self.verbose:
            solvers.options['show_progress'] = False
456
        # Call the iteration method
457
        #self.run()
458
    
459
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
460
        #Run the linear programming algorithm.
461
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
462
        # The objective is to resolve : min V / V >= PR + discount*P*V
463
464
        # The function linprog of the optimisation Toolbox of Mathworks
        # resolves :
Steven Cordwell's avatar
Steven Cordwell committed
465
        # min f'* x / M * x <= b
466
467
468
469
        # So the objective could be expressed as :
        # min V / (discount*P-I) * V <= - PR
        # To avoid loop on states, the matrix M is structured following actions
        # M(A*S,S)
470
471
472
        f = self._cvxmat(ones((self.S, 1)))
        h = self._cvxmat(self.R.reshape(self.S * self.A, 1, order="F"), tc='d')
        M = zeros((self.A * self.S, self.S))
Steven Cordwell's avatar
Steven Cordwell committed
473
474
        for aa in range(self.A):
            pos = (aa + 1) * self.S
475
476
477
            M[(pos - self.S):pos, :] = (
                self.discount * self.P[aa] - self._speye(self.S, self.S))
        M = self._cvxmat(M)
478
479
480
        # Using the glpk option will make this behave more like Octave
        # (Octave uses glpk) and perhaps Matlab. If solver=None (ie using the 
        # default cvxopt solver) then V agrees with the Octave equivalent
Steven Cordwell's avatar
Steven Cordwell committed
481
        # only to 10e-8 places. This assumes glpk is installed of course.
Steven Cordwell's avatar
Steven Cordwell committed
482
        self.V = array(self._linprog(f, M, -h, solver='glpk')['x'])
Steven Cordwell's avatar
Steven Cordwell committed
483
        # apply the Bellman operator
484
        self.policy, self.V =  self._bellmanOperator()
Steven Cordwell's avatar
Steven Cordwell committed
485
        # update the time spent solving
Steven Cordwell's avatar
Steven Cordwell committed
486
        self.time = time() - self.time
487
        # store value and policy as tuples
488
489
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
490
491

class PolicyIteration(MDP):
492
    
493
    """A discounted MDP solved using the policy iteration algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
494
    
Steven Cordwell's avatar
Steven Cordwell committed
495
496
    Arguments
    ---------
497
498
499
500
501
502
503
504
505
    transitions : array
        Transition probability matrices. See the documentation for the ``MDP``
        class for details.
    reward : array
        Reward matrices or vectors. See the documentation for the ``MDP`` class
        for details. 
    discount : float
        Discount factor. See the documentation for the ``MDP`` class for
        details.
Steven Cordwell's avatar
Steven Cordwell committed
506
507
508
    policy0 : array, optional
        Starting policy.
    max_iter : int, optional
509
510
        Maximum number of iterations. See the documentation for the ``MDP``
        class for details. Default is 1000.
Steven Cordwell's avatar
Steven Cordwell committed
511
512
513
514
    eval_type : int or string, optional
        Type of function used to evaluate policy. 0 or "matrix" to solve as a
        set of linear equations. 1 or "iterative" to solve iteratively.
        Default: 0.
Steven Cordwell's avatar
Steven Cordwell committed
515
             
Steven Cordwell's avatar
Steven Cordwell committed
516
517
518
519
520
521
522
523
524
525
    Data Attributes
    ---------------
    V : tuple
        value function 
    policy : tuple
        optimal policy
    iter : int
        number of done iterations
    time : float
        used CPU time
Steven Cordwell's avatar
Steven Cordwell committed
526
527
528
529
530
531
    
    Notes
    -----
    In verbose mode, at each iteration, displays the number 
    of differents actions between policy n-1 and n
    
Steven Cordwell's avatar
Steven Cordwell committed
532
533
    Examples
    --------
534
535
536
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.rand()
    >>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)
537
    >>> pi.run()
538
    
539
540
    >>> P, R = mdptoolbox.example.forest()
    >>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)
541
    >>> pi.run()
Steven Cordwell's avatar
Steven Cordwell committed
542
    >>> pi.V
543
    (26.244000000000018, 29.48400000000002, 33.484000000000016)
Steven Cordwell's avatar
Steven Cordwell committed
544
    >>> pi.policy
545
    (0, 0, 0)
Steven Cordwell's avatar
Steven Cordwell committed
546
    """
Steven Cordwell's avatar
Steven Cordwell committed
547
    
548
549
    def __init__(self, transitions, reward, discount, policy0=None,
                 max_iter=1000, eval_type=0):
Steven Cordwell's avatar
Steven Cordwell committed
550
551
552
        # Initialise a policy iteration MDP.
        #
        # Set up the MDP, but don't need to worry about epsilon values
553
        MDP.__init__(self, transitions, reward, discount, None, max_iter)
Steven Cordwell's avatar
Steven Cordwell committed
554
        # Check if the user has supplied an initial policy. If not make one.
Steven Cordwell's avatar
Steven Cordwell committed
555
        if policy0 == None:
Steven Cordwell's avatar
Steven Cordwell committed
556
            # Initialise the policy to the one which maximises the expected
Steven Cordwell's avatar
Steven Cordwell committed
557
            # immediate reward
Steven Cordwell's avatar
Steven Cordwell committed
558
559
            null = zeros(self.S)
            self.policy, null = self._bellmanOperator(null)
560
            del null
Steven Cordwell's avatar
Steven Cordwell committed
561
        else:
Steven Cordwell's avatar
Steven Cordwell committed
562
563
            # Use the policy that the user supplied
            # Make sure it is a numpy array
Steven Cordwell's avatar
Steven Cordwell committed
564
            policy0 = array(policy0)
Steven Cordwell's avatar
Steven Cordwell committed
565
            # Make sure the policy is the right size and shape
566
567
            assert policy0.shape in ((self.S, ), (self.S, 1), (1, self.S)), \
                "'policy0' must a vector with length S."
Steven Cordwell's avatar
Steven Cordwell committed
568
            # reshape the policy to be a vector
Steven Cordwell's avatar
Steven Cordwell committed
569
            policy0 = policy0.reshape(self.S)
570
571
572
573
574
575
            # The policy can only contain integers between 0 and S-1
            msg = "'policy0' must be a vector of integers between 0 and S-1."
            assert not mod(policy0, 1).any(), msg
            assert (policy0 >= 0).all(), msg
            assert (policy0 < self.S).all(), msg
            self.policy = policy0
Steven Cordwell's avatar
Steven Cordwell committed
576
        # set the initial values to zero
Steven Cordwell's avatar
Steven Cordwell committed
577
        self.V = zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
578
        # Do some setup depending on the evaluation type
Steven Cordwell's avatar
Steven Cordwell committed
579
        if eval_type in (0, "matrix"):
580
            from numpy.linalg import solve
581
            from scipy.sparse import eye
582
583
            self._speye = eye
            self._lin_eq = solve
Steven Cordwell's avatar
Steven Cordwell committed
584
585
586
587
            self.eval_type = "matrix"
        elif eval_type in (1, "iterative"):
            self.eval_type = "iterative"
        else:
Steven Cordwell's avatar
Steven Cordwell committed
588
589
590
            raise ValueError("'eval_type' should be '0' for matrix evaluation "
                             "or '1' for iterative evaluation. The strings "
                             "'matrix' and 'iterative' can also be used.")
591
        # Call the iteration method
592
        #self.run()
Steven Cordwell's avatar
Steven Cordwell committed
593
    
594
    def _computePpolicyPRpolicy(self):
Steven Cordwell's avatar
Steven Cordwell committed
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
        # Compute the transition matrix and the reward matrix for a policy.
        #
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
        # P(SxSxA)  = transition matrix 
        #     P could be an array with 3 dimensions or a cell array (1xA),
        #     each cell containing a matrix (SxS) possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
        #     R could be an array with 3 dimensions (SxSxA) or 
        #     a cell array (1xA), each cell containing a sparse matrix (SxS) or
        #     a 2D array(SxA) possibly sparse  
        # policy(S) = a policy
        #
        # Evaluation
        # ----------
        # Ppolicy(SxS)  = transition matrix for policy
        # PRpolicy(S)   = reward matrix for policy
        #
Steven Cordwell's avatar
Steven Cordwell committed
614
615
        Ppolicy = empty((self.S, self.S))
        Rpolicy = zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
616
        for aa in range(self.A): # avoid looping over S
Steven Cordwell's avatar
Steven Cordwell committed
617
618
            # the rows that use action a.
            ind = (self.policy == aa).nonzero()[0]
619
620
            # if no rows use action a, then no need to assign this
            if ind.size > 0:
621
622
623
624
                try:
                    Ppolicy[ind, :] = self.P[aa][ind, :]
                except ValueError:
                    Ppolicy[ind, :] = self.P[aa][ind, :].todense()
625
                #PR = self._computePR() # an apparently uneeded line, and
Steven Cordwell's avatar
Steven Cordwell committed
626
627
                # perhaps harmful in this implementation c.f.
                # mdp_computePpolicyPRpolicy.m
628
                Rpolicy[ind] = self.R[aa][ind]
Steven Cordwell's avatar
Steven Cordwell committed
629
630
631
632
633
634
635
636
637
638
        # self.R cannot be sparse with the code in its current condition, but
        # it should be possible in the future. Also, if R is so big that its
        # a good idea to use a sparse matrix for it, then converting PRpolicy
        # from a dense to sparse matrix doesn't seem very memory efficient
        if type(self.R) is sparse:
            Rpolicy = sparse(Rpolicy)
        #self.Ppolicy = Ppolicy
        #self.Rpolicy = Rpolicy
        return (Ppolicy, Rpolicy)
    
639
    def _evalPolicyIterative(self, V0=0, epsilon=0.0001, max_iter=10000):
Steven Cordwell's avatar
Steven Cordwell committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
        # Evaluate a policy using iteration.
        #
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
        # P(SxSxA)  = transition matrix 
        #    P could be an array with 3 dimensions or 
        #    a cell array (1xS), each cell containing a matrix possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
        #    R could be an array with 3 dimensions (SxSxA) or 
        #    a cell array (1xA), each cell containing a sparse matrix (SxS) or
        #    a 2D array(SxA) possibly sparse  
        # discount  = discount rate in ]0; 1[
        # policy(S) = a policy
        # V0(S)     = starting value function, optional (default : zeros(S,1))
        # epsilon   = epsilon-optimal policy search, upper than 0,
        #    optional (default : 0.0001)
        # max_iter  = maximum number of iteration to be done, upper than 0, 
        #    optional (default : 10000)
        #    
        # Evaluation
        # ----------
        # Vpolicy(S) = value function, associated to a specific policy
        #
        # Notes
        # -----
        # In verbose mode, at each iteration, displays the condition which
        # stopped iterations: epsilon-optimum value function found or maximum
        # number of iterations reached.
        #
670
671
672
673
674
        try:
            assert V0.shape in ((self.S, ), (self.S, 1), (1, self.S)), \
                "'V0' must be a vector of length S."
            policy_V = array(V0).reshape(self.S)
        except AttributeError:
Steven Cordwell's avatar
Steven Cordwell committed
675
            if V0 == 0:
676
                policy_V = zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
677
678
            else:
                policy_V = array(V0).reshape(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
679
        
680
        policy_P, policy_R = self._computePpolicyPRpolicy()
Steven Cordwell's avatar
Steven Cordwell committed
681
682
        
        if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
683
            print('    Iteration\t\t    V variation')
684
        
Steven Cordwell's avatar
Steven Cordwell committed
685
686
687
        itr = 0
        done = False
        while not done:
688
            itr += 1
689
690
            
            Vprev = policy_V
691
            policy_V = policy_R + self.discount * policy_P.dot(Vprev)
692
693
            
            variation = absolute(policy_V - Vprev).max()
Steven Cordwell's avatar
Steven Cordwell committed
694
            if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
695
                print(('      %s\t\t      %s') % (itr, variation))
696
697
698
            
            # ensure |Vn - Vpolicy| < epsilon
            if variation < ((1 - self.discount) / self.discount) * epsilon:
Steven Cordwell's avatar
Steven Cordwell committed
699
700
                done = True
                if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
701
                    print(MSG_STOP_EPSILON_OPTIMAL_VALUE)
Steven Cordwell's avatar
Steven Cordwell committed
702
703
704
            elif itr == max_iter:
                done = True
                if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
705
                    print(MSG_STOP_MAX_ITER)
Steven Cordwell's avatar
Steven Cordwell committed
706
        
Steven Cordwell's avatar
Steven Cordwell committed
707
        self.V = policy_V
708
    
709
    def _evalPolicyMatrix(self):
Steven Cordwell's avatar
Steven Cordwell committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        # Evaluate the value function of the policy using linear equations.
        #
        # Arguments 
        # ---------
        # Let S = number of states, A = number of actions
        # P(SxSxA) = transition matrix 
        #      P could be an array with 3 dimensions or a cell array (1xA),
        #      each cell containing a matrix (SxS) possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
        #      R could be an array with 3 dimensions (SxSxA) or 
        #      a cell array (1xA), each cell containing a sparse matrix (SxS) or
        #      a 2D array(SxA) possibly sparse  
        # discount = discount rate in ]0; 1[
        # policy(S) = a policy
        #
        # Evaluation
        # ----------
        # Vpolicy(S) = value function of the policy
        #
729
        Ppolicy, Rpolicy = self._computePpolicyPRpolicy()
Steven Cordwell's avatar
Steven Cordwell committed
730
        # V = PR + gPV  => (I-gP)V = PR  => V = inv(I-gP)* PR
731
732
        self.V = self._lin_eq(
            (self._speye(self.S, self.S) - self.discount * Ppolicy), Rpolicy)
Steven Cordwell's avatar
Steven Cordwell committed
733
    
734
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
735
736
        # Run the policy iteration algorithm.
        # If verbose the print a header
737
        if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
738
            print('  Iteration\t\tNumber of different actions')
Steven Cordwell's avatar
Steven Cordwell committed
739
        # Set up the while stopping condition and the current time
Steven Cordwell's avatar
Steven Cordwell committed
740
        done = False
741
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
742
        # loop until a stopping condition is reached
Steven Cordwell's avatar
Steven Cordwell committed
743
        while not done:
744
            self.iter += 1
745
            # these _evalPolicy* functions will update the classes value
Steven Cordwell's avatar
Steven Cordwell committed
746
            # attribute
Steven Cordwell's avatar
Steven Cordwell committed
747
            if self.eval_type == "matrix":
748
                self._evalPolicyMatrix()
Steven Cordwell's avatar
Steven Cordwell committed
749
            elif self.eval_type == "iterative":
750
                self._evalPolicyIterative()
Steven Cordwell's avatar
Steven Cordwell committed
751
752
            # This should update the classes policy attribute but leave the
            # value alone
753
            policy_next, null = self._bellmanOperator()
754
            del null
Steven Cordwell's avatar
Steven Cordwell committed
755
756
            # calculate in how many places does the old policy disagree with
            # the new policy
757
            n_different = (policy_next != self.policy).sum()
Steven Cordwell's avatar
Steven Cordwell committed
758
            # if verbose then continue printing a table
759
            if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
760
                print(('    %s\t\t  %s') % (self.iter, n_different))
Steven Cordwell's avatar
Steven Cordwell committed
761
762
            # Once the policy is unchanging of the maximum number of 
            # of iterations has been reached then stop
763
            if n_different == 0:
Steven Cordwell's avatar
Steven Cordwell committed
764
                done = True
765
                if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
766
                    print(MSG_STOP_UNCHANGING_POLICY)
767
768
769
            elif (self.iter == self.max_iter):
                done = True 
                if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
770
                    print(MSG_STOP_MAX_ITER)
771
772
            else:
                self.policy = policy_next
Steven Cordwell's avatar
Steven Cordwell committed
773
        # update the time to return th computation time
774
        self.time = time() - self.time
Steven Cordwell's avatar
Steven Cordwell committed
775
        # store value and policy as tuples
776
777
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
778

779
class PolicyIterationModified(PolicyIteration):
780
    
781
    """A discounted MDP  solved using a modifified policy iteration algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
782
783
784
    
    Arguments
    ---------
785
786
787
788
789
790
791
792
793
    transitions : array
        Transition probability matrices. See the documentation for the ``MDP``
        class for details.
    reward : array
        Reward matrices or vectors. See the documentation for the ``MDP`` class
        for details.
    discount : float
        Discount factor. See the documentation for the ``MDP`` class for
        details.
Steven Cordwell's avatar
Steven Cordwell committed
794
795
796
797
    epsilon : float, optional
        Stopping criterion. See the documentation for the ``MDP`` class for
        details. Default: 0.01.
    max_iter : int, optional
798
        Maximum number of iterations. See the documentation for the ``MDP``
Steven Cordwell's avatar
Steven Cordwell committed
799
        class for details. Default is 10.
Steven Cordwell's avatar
Steven Cordwell committed
800
801
802
    
    Data Attributes
    ---------------
Steven Cordwell's avatar
Steven Cordwell committed
803
804
805
806
807
808
809
810
    V : tuple
        value function 
    policy : tuple
        optimal policy
    iter : int
        number of done iterations
    time : float
        used CPU time
Steven Cordwell's avatar
Steven Cordwell committed
811
812
813
    
    Examples
    --------
814
815
816
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.forest()
    >>> pim = mdptoolbox.mdp.PolicyIterationModified(P, R, 0.9)
817
    >>> pim.run()
818
    >>> pim.policy
819
    (0, 0, 0)
820
    >>> pim.V
821
    (21.81408652334702, 25.054086523347017, 29.054086523347017)
822
    
Steven Cordwell's avatar
Steven Cordwell committed
823
    """
824
    
825
826
    def __init__(self, transitions, reward, discount, epsilon=0.01,
                 max_iter=10):
827
        # Initialise a (modified) policy iteration MDP.
Steven Cordwell's avatar
Steven Cordwell committed
828
        
829
830
831
        # Maybe its better not to subclass from PolicyIteration, because the
        # initialisation of the two are quite different. eg there is policy0
        # being calculated here which doesn't need to be. The only thing that
832
        # is needed from the PolicyIteration class is the _evalPolicyIterative
833
        # function. Perhaps there is a better way to do it?
834
835
        PolicyIteration.__init__(self, transitions, reward, discount, None,
                                 max_iter, 1)
836
        
837
838
        # PolicyIteration doesn't pass epsilon to MDP.__init__() so we will
        # check it here
839
840
        self.epsilon = float(epsilon)
        assert epsilon > 0, "'epsilon' must be greater than 0."
841
        
842
843
        # computation of threshold of variation for V for an epsilon-optimal
        # policy
844
        if self.discount != 1:
845
            self.thresh = self.epsilon * (1 - self.discount) / self.discount
846
        else:
847
            self.thresh = self.epsilon
848
        
849
        if self.discount == 1:
Steven Cordwell's avatar
Steven Cordwell committed
850
            self.V = zeros((self.S, 1))
851
        else:
852
            Rmin = min(R.min() for R in self.R)
853
            self.V = 1 / (1 - self.discount) * Rmin * ones((self.S,))
854
855
        
        # Call the iteration method
856
        #self.run()
Steven Cordwell's avatar
Steven Cordwell committed
857
    
858
    def run(self):
859
        # Run the modified policy iteration algorithm.
860
861
        
        if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
862
            print('  \tIteration\t\tV-variation')
863
        
Steven Cordwell's avatar
Steven Cordwell committed
864
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
865
        
866
867
        done = False
        while not done:
868
            self.iter += 1
869
            
870
            self.policy, Vnext = self._bellmanOperator()
871
            #[Ppolicy, PRpolicy] = mdp_computePpolicyPRpolicy(P, PR, policy);
872
            
873
            variation = getSpan(Vnext - self.V)
874
            if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
875
                print(("    %s\t\t  %s" % (self.iter, variation)))
876
            
Steven Cordwell's avatar
Steven Cordwell committed
877
            self.V = Vnext
Steven Cordwell's avatar
Steven Cordwell committed
878
            if variation < self.thresh:
879
880
881
882
                done = True
            else:
                is_verbose = False
                if self.verbose:
883
                    self.setSilent()
884
885
                    is_verbose = True
                
886
                self._evalPolicyIterative(self.V, self.epsilon, self.max_iter)
887
888
                
                if is_verbose:
889
                    self.setVerbose()
890
        
891
        self.time = time() - self.time
892
893
        
        # store value and policy as tuples
894
895
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
896
897

class QLearning(MDP):
898
    
899
    """A discounted MDP solved using the Q learning algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
900
901
902
    
    Parameters
    ----------
903
904
905
906
907
908
909
910
911
    transitions : array
        Transition probability matrices. See the documentation for the ``MDP``
        class for details.
    reward : array
        Reward matrices or vectors. See the documentation for the ``MDP`` class
        for details.
    discount : float
        Discount factor. See the documentation for the ``MDP`` class for
        details. 
Steven Cordwell's avatar
Steven Cordwell committed
912
913
914
    n_iter : int, optional
        Number of iterations to execute. This is ignored unless it is an 
        integer greater than the default value. Defaut: 10,000.