mdp.py 55.8 KB
Newer Older
Steven Cordwell's avatar
Steven Cordwell committed
1
# -*- coding: utf-8 -*-
Steven Cordwell's avatar
Steven Cordwell committed
2
"""Markov Decision Process (MDP) Toolbox
3
=====================================
4

Steven Cordwell's avatar
Steven Cordwell committed
5
6
The MDP toolbox provides classes and functions for the resolution of
descrete-time Markov Decision Processes.
Steven Cordwell's avatar
Steven Cordwell committed
7

Steven Cordwell's avatar
Steven Cordwell committed
8
9
10
11
12
Available classes
-----------------
MDP
    Base Markov decision process class
FiniteHorizon
Steven Cordwell's avatar
Steven Cordwell committed
13
    Backwards induction finite horizon MDP
Steven Cordwell's avatar
Steven Cordwell committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
LP
    Linear programming MDP
PolicyIteration
    Policy iteration MDP
PolicyIterationModified
    Modified policy iteration MDP
QLearning
    Q-learning MDP
RelativeValueIteration
    Relative value iteration MDP
ValueIteration
    Value iteration MDP
ValueIterationGS
    Gauss-Seidel value iteration MDP
Steven Cordwell's avatar
Steven Cordwell committed
28

Steven Cordwell's avatar
Steven Cordwell committed
29
30
31
32
33
34
35
36
37
38
Available functions
-------------------
check
    Check that an MDP is properly defined
checkSquareStochastic
    Check that a matrix is square and stochastic
exampleForest
    A simple forest management example
exampleRand
    A random example
Steven Cordwell's avatar
Steven Cordwell committed
39

Steven Cordwell's avatar
Steven Cordwell committed
40
41
42
43
44
How to use the documentation
----------------------------
Documentation is available both as docstrings provided with the code and
in html or pdf format from 
`The MDP toolbox homepage <http://www.somewhere.com>`_. The docstring
45
examples assume that the `mdp` module has been imported imported like so::
Steven Cordwell's avatar
Steven Cordwell committed
46

47
  >>> import mdptoolbox.mdp as mdp
Steven Cordwell's avatar
Steven Cordwell committed
48
49
50
51
52

Code snippets are indicated by three greater-than signs::

  >>> x = 17
  >>> x = x + 1
53
54
  >>> x
  18
Steven Cordwell's avatar
Steven Cordwell committed
55
56
57
58
59

The documentation can be displayed with
`IPython <http://ipython.scipy.org>`_. For example, to view the docstring of
the ValueIteration class use ``mdp.ValueIteration?<ENTER>``, and to view its
source code use ``mdp.ValueIteration??<ENTER>``.
60

61
62
63
Acknowledgments
---------------
This module is modified from the MDPtoolbox (c) 2009 INRA available at 
Steven Cordwell's avatar
Steven Cordwell committed
64
http://www.inra.fr/mia/T/MDPtoolbox/.
65

Steven Cordwell's avatar
Steven Cordwell committed
66
67
"""

68
69
# Copyright (c) 2011-2013 Steven A. W. Cordwell
# Copyright (c) 2009 INRA
Steven Cordwell's avatar
Steven Cordwell committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# 
# All rights reserved.
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 
#   * Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#   * Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#   * Neither the name of the <ORGANIZATION> nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
# 
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

Steven Cordwell's avatar
Steven Cordwell committed
97
98
99
from math import ceil, log, sqrt
from time import time

100
101
from numpy import absolute, array, empty, mean, mod, multiply
from numpy import ndarray, ones, zeros
102
from numpy.random import randint, random
Steven Cordwell's avatar
Steven Cordwell committed
103
from scipy.sparse import csr_matrix as sparse
Steven Cordwell's avatar
Steven Cordwell committed
104

105
from utils import check, getSpan
106

Steven Cordwell's avatar
Steven Cordwell committed
107
class MDP(object):
108
    
Steven Cordwell's avatar
Steven Cordwell committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    """A Markov Decision Problem.
    
    Parameters
    ----------
    transitions : array
            transition probability matrices
    reward : array
            reward matrices
    discount : float or None
            discount factor
    epsilon : float or None
            stopping criteria
    max_iter : int or None
            maximum number of iterations
    
    Attributes
    ----------
    P : array
        Transition probability matrices
    R : array
        Reward matrices
    V : list
        Value function
    discount : float
        b
    max_iter : int
        a
    policy : list
        a
    time : float
        a
    verbose : logical
        a
    
    Methods
    -------
    iterate
        To be implemented in child classes, raises exception
    setSilent
        Turn the verbosity off
    setVerbose
        Turn the verbosity on
    
    """
Steven Cordwell's avatar
Steven Cordwell committed
153
    
154
    def __init__(self, transitions, reward, discount, epsilon, max_iter):
155
        # Initialise a MDP based on the input parameters.
156
        
Steven Cordwell's avatar
Steven Cordwell committed
157
158
        # if the discount is None then the algorithm is assumed to not use it
        # in its computations
159
160
161
162
163
164
        if discount is not None:
            self.discount = float(discount)
            assert 0.0 < self.discount <= 1.0, "Discount rate must be in ]0; 1]"
            if self.discount == 1:
                print("PyMDPtoolbox WARNING: check conditions of convergence. "
                      "With no discount, convergence is not always assumed.")
Steven Cordwell's avatar
Steven Cordwell committed
165
166
        # if the max_iter is None then the algorithm is assumed to not use it
        # in its computations
167
168
169
170
        if max_iter is not None:
            self.max_iter = int(max_iter)
            assert self.max_iter > 0, "The maximum number of iterations " \
                                      "must be greater than 0."
Steven Cordwell's avatar
Steven Cordwell committed
171
        # check that epsilon is something sane
172
173
174
        if epsilon is not None:
            self.epsilon = float(epsilon)
            assert self.epsilon > 0, "Epsilon must be greater than 0."
Steven Cordwell's avatar
Steven Cordwell committed
175
176
177
178
        # we run a check on P and R to make sure they are describing an MDP. If
        # an exception isn't raised then they are assumed to be correct.
        check(transitions, reward)
        # computePR will assign the variables self.S, self.A, self.P and self.R
179
        self._computePR(transitions, reward)
Steven Cordwell's avatar
Steven Cordwell committed
180
181
182
183
        # the verbosity is by default turned off
        self.verbose = False
        # Initially the time taken to perform the computations is set to None
        self.time = None
184
185
        # set the initial iteration count to zero
        self.iter = 0
Steven Cordwell's avatar
Steven Cordwell committed
186
        # V should be stored as a vector ie shape of (S,) or (1, S)
Steven Cordwell's avatar
Steven Cordwell committed
187
        self.V = None
Steven Cordwell's avatar
Steven Cordwell committed
188
        # policy can also be stored as a vector
Steven Cordwell's avatar
Steven Cordwell committed
189
        self.policy = None
Steven Cordwell's avatar
Steven Cordwell committed
190
    
191
192
193
194
195
196
197
198
    def __repr__(self):
        P_repr = "P: \n"
        R_repr = "R: \n"
        for aa in range(self.A):
            P_repr += repr(self.P[aa]) + "\n"
            R_repr += repr(self.R[aa]) + "\n"
        print(P_repr + "\n" + R_repr)
    
199
    def _bellmanOperator(self, V=None):
Steven Cordwell's avatar
Steven Cordwell committed
200
        # Apply the Bellman operator on the value function.
201
        # 
Steven Cordwell's avatar
Steven Cordwell committed
202
        # Updates the value function and the Vprev-improving policy.
203
        # 
Steven Cordwell's avatar
Steven Cordwell committed
204
205
206
207
        # Returns: (policy, value), tuple of new policy and its value
        #
        # If V hasn't been sent into the method, then we assume to be working
        # on the objects V attribute
208
209
        if V is None:
            # this V should be a reference to the data rather than a copy
210
211
            V = self.V
        else:
Steven Cordwell's avatar
Steven Cordwell committed
212
            # make sure the user supplied V is of the right shape
213
            try:
214
215
                assert V.shape in ((self.S,), (1, self.S)), "V is not the " \
                    "right shape (Bellman operator)."
216
            except AttributeError:
217
                raise TypeError("V must be a numpy array or matrix.")
218
219
220
221
        # Looping through each action the the Q-value matrix is calculated.
        # P and V can be any object that supports indexing, so it is important
        # that you know they define a valid MDP before calling the
        # _bellmanOperator method. Otherwise the results will be meaningless.
Steven Cordwell's avatar
Steven Cordwell committed
222
        Q = empty((self.A, self.S))
Steven Cordwell's avatar
Steven Cordwell committed
223
        for aa in range(self.A):
Steven Cordwell's avatar
Steven Cordwell committed
224
            Q[aa] = self.R[aa] + self.discount * self.P[aa].dot(V)
Steven Cordwell's avatar
Steven Cordwell committed
225
        # Get the policy and value, for now it is being returned but...
226
        # Which way is better?
227
        # 1. Return, (policy, value)
228
        return (Q.argmax(axis=0), Q.max(axis=0))
Steven Cordwell's avatar
Steven Cordwell committed
229
230
        # 2. update self.policy and self.V directly
        # self.V = Q.max(axis=1)
231
        # self.policy = Q.argmax(axis=1)
Steven Cordwell's avatar
Steven Cordwell committed
232
    
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    def _computeP(self, P):
        # Set self.P as a tuple of length A, with each element storing an S×S
        # matrix.
        self.A = len(P)
        try:
            if P.ndim == 3:
                self.S = P.shape[1]
            else:
               self.S = P[0].shape[0]
        except AttributeError:
            self.S = P[0].shape[0]
        # convert P to a tuple of numpy arrays
        self.P = tuple([P[aa] for aa in range(self.A)])
    
247
    def _computePR(self, P, R):
Steven Cordwell's avatar
Steven Cordwell committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        # Compute the reward for the system in one state chosing an action.
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
        #    P(SxSxA)  = transition matrix 
        #        P could be an array with 3 dimensions or  a cell array (1xA), 
        #        each cell containing a matrix (SxS) possibly sparse
        #    R(SxSxA) or (SxA) = reward matrix
        #        R could be an array with 3 dimensions (SxSxA) or  a cell array 
        #        (1xA), each cell containing a sparse matrix (SxS) or a 2D 
        #        array(SxA) possibly sparse  
        # Evaluation
        # ----------
        #    PR(SxA)   = reward matrix
        #
263
        # We assume that P and R define a MDP i,e. assumption is that
Steven Cordwell's avatar
Steven Cordwell committed
264
        # check(P, R) has already been run and doesn't fail.
265
        #
266
267
        # First compute store P, S, and A
        self._computeP(P)
Steven Cordwell's avatar
Steven Cordwell committed
268
269
        # Set self.R as a tuple of length A, with each element storing an 1×S
        # vector.
270
        try:
271
            if R.ndim == 2:
272
273
                self.R = tuple([array(R[:, aa]).reshape(self.S)
                                for aa in range(self.A)])
Steven Cordwell's avatar
Steven Cordwell committed
274
            else:
275
276
                self.R = tuple([multiply(P[aa], R[aa]).sum(1).reshape(self.S)
                                for aa in xrange(self.A)])
277
        except AttributeError:
278
279
            self.R = tuple([multiply(P[aa], R[aa]).sum(1).reshape(self.S)
                            for aa in xrange(self.A)])
280
    
281
    def _iterate(self):
Steven Cordwell's avatar
Steven Cordwell committed
282
        # Raise error because child classes should implement this function.
283
        raise NotImplementedError("You should create an _iterate() method.")
Steven Cordwell's avatar
Steven Cordwell committed
284
    
Steven Cordwell's avatar
Steven Cordwell committed
285
    def setSilent(self):
286
        """Set the MDP algorithm to silent mode."""
Steven Cordwell's avatar
Steven Cordwell committed
287
288
289
        self.verbose = False
    
    def setVerbose(self):
290
        """Set the MDP algorithm to verbose mode."""
Steven Cordwell's avatar
Steven Cordwell committed
291
        self.verbose = True
Steven Cordwell's avatar
Steven Cordwell committed
292
293

class FiniteHorizon(MDP):
294
    
Steven Cordwell's avatar
Steven Cordwell committed
295
    """A MDP solved using the finite-horizon backwards induction algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
296
297
    
    Let S = number of states, A = number of actions
Steven Cordwell's avatar
Steven Cordwell committed
298
299
300
    
    Parameters
    ----------
Steven Cordwell's avatar
Steven Cordwell committed
301
    P(SxSxA) = transition matrix 
302
303
             P could be an array with 3 dimensions ora cell array (1xA),
             each cell containing a matrix (SxS) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
304
305
306
307
308
309
310
    R(SxSxA) or (SxA) = reward matrix
             R could be an array with 3 dimensions (SxSxA) or 
             a cell array (1xA), each cell containing a sparse matrix (SxS) or
             a 2D array(SxA) possibly sparse  
    discount = discount factor, in ]0, 1]
    N        = number of periods, upper than 0
    h(S)     = terminal reward, optional (default [0; 0; ... 0] )
Steven Cordwell's avatar
Steven Cordwell committed
311
312
    
    Attributes
Steven Cordwell's avatar
Steven Cordwell committed
313
    ----------
Steven Cordwell's avatar
Steven Cordwell committed
314
315
316
    
    Methods
    -------
Steven Cordwell's avatar
Steven Cordwell committed
317
318
319
320
321
322
323
324
325
326
327
328
329
    V(S,N+1)     = optimal value function
                 V(:,n) = optimal value function at stage n
                        with stage in 1, ..., N
                        V(:,N+1) = value function for terminal stage 
    policy(S,N)  = optimal policy
                 policy(:,n) = optimal policy at stage n
                        with stage in 1, ...,N
                        policy(:,N) = policy for stage N
    cpu_time = used CPU time
  
    Notes
    -----
    In verbose mode, displays the current stage and policy transpose.
330
    
Steven Cordwell's avatar
Steven Cordwell committed
331
332
    Examples
    --------
333
334
335
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.forest()
    >>> fh = mdptoolbox.mdp.FiniteHorizon(P, R, 0.9, 3)
Steven Cordwell's avatar
Steven Cordwell committed
336
337
338
339
340
341
342
343
    >>> fh.V
    array([[ 2.6973,  0.81  ,  0.    ,  0.    ],
           [ 5.9373,  3.24  ,  1.    ,  0.    ],
           [ 9.9373,  7.24  ,  4.    ,  0.    ]])
    >>> fh.policy
    array([[0, 0, 0],
           [0, 0, 1],
           [0, 0, 0]])
344
    
Steven Cordwell's avatar
Steven Cordwell committed
345
    """
Steven Cordwell's avatar
Steven Cordwell committed
346

Steven Cordwell's avatar
Steven Cordwell committed
347
    def __init__(self, transitions, reward, discount, N, h=None):
348
        # Initialise a finite horizon MDP.
349
350
        self.N = int(N)
        assert self.N > 0, 'PyMDPtoolbox: N must be greater than 0.'
Steven Cordwell's avatar
Steven Cordwell committed
351
        # Initialise the base class
352
        MDP.__init__(self, transitions, reward, discount, None, None)
Steven Cordwell's avatar
Steven Cordwell committed
353
354
        # remove the iteration counter, it is not meaningful for backwards
        # induction
355
        del self.iter
Steven Cordwell's avatar
Steven Cordwell committed
356
        # There are value vectors for each time step up to the horizon
357
        self.V = zeros((self.S, N + 1))
Steven Cordwell's avatar
Steven Cordwell committed
358
359
360
361
362
        # There are policy vectors for each time step before the horizon, when
        # we reach the horizon we don't need to make decisions anymore.
        self.policy = empty((self.S, N), dtype=int)
        # Set the reward for the final transition to h, if specified.
        if h is not None:
363
            self.V[:, N] = h
364
365
366
367
        # Call the iteration method
        self._iterate()
        
    def _iterate(self):
Steven Cordwell's avatar
Steven Cordwell committed
368
        # Run the finite horizon algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
369
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
370
        # loop through each time period
371
        for n in range(self.N):
Steven Cordwell's avatar
Steven Cordwell committed
372
373
374
            W, X = self._bellmanOperator(self.V[:, self.N - n])
            self.V[:, self.N - n - 1] = X
            self.policy[:, self.N - n - 1] = W
Steven Cordwell's avatar
Steven Cordwell committed
375
            if self.verbose:
376
377
                print("stage: %s ... policy transpose : %s") % (
                    self.N - n, self.policy[:, self.N - n -1].tolist())
Steven Cordwell's avatar
Steven Cordwell committed
378
        # update time spent running
Steven Cordwell's avatar
Steven Cordwell committed
379
        self.time = time() - self.time
Steven Cordwell's avatar
Steven Cordwell committed
380
381
382
383
384
385
386
387
388
389
        # After this we could create a tuple of tuples for the values and 
        # policies.
        #V = []
        #p = []
        #for n in xrange(self.N):
        #    V.append()
        #    p.append()
        #V.append()
        #self.V = tuple(V)
        #self.policy = tuple(p)
Steven Cordwell's avatar
Steven Cordwell committed
390
391

class LP(MDP):
392
    
393
    """A discounted MDP soloved using linear programming.
Steven Cordwell's avatar
Steven Cordwell committed
394
395
396
397
398

    Arguments
    ---------
    Let S = number of states, A = number of actions
    P(SxSxA) = transition matrix 
399
400
             P could be an array with 3 dimensions or a cell array (1xA),
             each cell containing a matrix (SxS) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    R(SxSxA) or (SxA) = reward matrix
             R could be an array with 3 dimensions (SxSxA) or 
             a cell array (1xA), each cell containing a sparse matrix (SxS) or
             a 2D array(SxA) possibly sparse  
    discount = discount rate, in ]0; 1[
    h(S)     = terminal reward, optional (default [0; 0; ... 0] )
    
    Evaluation
    ----------
    V(S)   = optimal values
    policy(S) = optimal policy
    cpu_time = used CPU time
    
    Notes    
    -----
    In verbose mode, displays the current stage and policy transpose.
    
    Examples
    --------
420
421
422
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.forest()
    >>> lp = mdptoolbox.mdp.LP(P, R, 0.9)
423
    
Steven Cordwell's avatar
Steven Cordwell committed
424
    """
Steven Cordwell's avatar
Steven Cordwell committed
425

Steven Cordwell's avatar
Steven Cordwell committed
426
    def __init__(self, transitions, reward, discount):
427
        # Initialise a linear programming MDP.
Steven Cordwell's avatar
Steven Cordwell committed
428
        # import some functions from cvxopt and set them as object methods
Steven Cordwell's avatar
Steven Cordwell committed
429
430
        try:
            from cvxopt import matrix, solvers
431
432
            self._linprog = solvers.lp
            self._cvxmat = matrix
Steven Cordwell's avatar
Steven Cordwell committed
433
        except ImportError:
434
435
            raise ImportError("The python module cvxopt is required to use "
                              "linear programming functionality.")
Steven Cordwell's avatar
Steven Cordwell committed
436
437
        # we also need diagonal matrices, and using a sparse one may be more
        # memory efficient
Steven Cordwell's avatar
Steven Cordwell committed
438
        from scipy.sparse import eye as speye
439
        self._speye = speye
Steven Cordwell's avatar
Steven Cordwell committed
440
        # initialise the MDP. epsilon and max_iter are not needed
441
        MDP.__init__(self, transitions, reward, discount, None, None)
Steven Cordwell's avatar
Steven Cordwell committed
442
        # Set the cvxopt solver to be quiet by default, but ...
443
        # this doesn't do what I want it to do c.f. issue #3
444
445
        if not self.verbose:
            solvers.options['show_progress'] = False
446
447
        # Call the iteration method
        self._iterate()
448
    
449
    def _iterate(self):
Steven Cordwell's avatar
Steven Cordwell committed
450
        #Run the linear programming algorithm.
451
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
452
        # The objective is to resolve : min V / V >= PR + discount*P*V
453
454
        # The function linprog of the optimisation Toolbox of Mathworks
        # resolves :
Steven Cordwell's avatar
Steven Cordwell committed
455
        # min f'* x / M * x <= b
456
457
458
459
        # So the objective could be expressed as :
        # min V / (discount*P-I) * V <= - PR
        # To avoid loop on states, the matrix M is structured following actions
        # M(A*S,S)
460
461
462
        f = self._cvxmat(ones((self.S, 1)))
        h = self._cvxmat(self.R.reshape(self.S * self.A, 1, order="F"), tc='d')
        M = zeros((self.A * self.S, self.S))
Steven Cordwell's avatar
Steven Cordwell committed
463
464
        for aa in range(self.A):
            pos = (aa + 1) * self.S
465
466
467
            M[(pos - self.S):pos, :] = (
                self.discount * self.P[aa] - self._speye(self.S, self.S))
        M = self._cvxmat(M)
468
469
470
        # Using the glpk option will make this behave more like Octave
        # (Octave uses glpk) and perhaps Matlab. If solver=None (ie using the 
        # default cvxopt solver) then V agrees with the Octave equivalent
Steven Cordwell's avatar
Steven Cordwell committed
471
        # only to 10e-8 places. This assumes glpk is installed of course.
Steven Cordwell's avatar
Steven Cordwell committed
472
        self.V = array(self._linprog(f, M, -h, solver='glpk')['x'])
Steven Cordwell's avatar
Steven Cordwell committed
473
        # apply the Bellman operator
474
        self.policy, self.V =  self._bellmanOperator()
Steven Cordwell's avatar
Steven Cordwell committed
475
        # update the time spent solving
Steven Cordwell's avatar
Steven Cordwell committed
476
        self.time = time() - self.time
477
        # store value and policy as tuples
478
479
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
480
481

class PolicyIteration(MDP):
482
    
483
    """A discounted MDP solved using the policy iteration algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
484
    
Steven Cordwell's avatar
Steven Cordwell committed
485
486
487
488
    Arguments
    ---------
    Let S = number of states, A = number of actions
    P(SxSxA) = transition matrix 
489
490
             P could be an array with 3 dimensions or a cell array (1xA),
             each cell containing a matrix (SxS) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    R(SxSxA) or (SxA) = reward matrix
             R could be an array with 3 dimensions (SxSxA) or 
             a cell array (1xA), each cell containing a sparse matrix (SxS) or
             a 2D array(SxA) possibly sparse  
    discount = discount rate, in ]0, 1[
    policy0(S) = starting policy, optional 
    max_iter = maximum number of iteration to be done, upper than 0, 
             optional (default 1000)
    eval_type = type of function used to evaluate policy: 
             0 for mdp_eval_policy_matrix, else mdp_eval_policy_iterative
             optional (default 0)
             
    Evaluation
    ----------
    V(S)   = value function 
    policy(S) = optimal policy
    iter     = number of done iterations
    cpu_time = used CPU time
    
    Notes
    -----
    In verbose mode, at each iteration, displays the number 
    of differents actions between policy n-1 and n
    
Steven Cordwell's avatar
Steven Cordwell committed
515
516
    Examples
    --------
517
518
519
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.rand()
    >>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)
520
    
521
522
    >>> P, R = mdptoolbox.example.forest()
    >>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)
Steven Cordwell's avatar
Steven Cordwell committed
523
    >>> pi.V
524
    (26.244000000000018, 29.48400000000002, 33.484000000000016)
Steven Cordwell's avatar
Steven Cordwell committed
525
    >>> pi.policy
526
    (0, 0, 0)
Steven Cordwell's avatar
Steven Cordwell committed
527
    """
Steven Cordwell's avatar
Steven Cordwell committed
528
    
529
530
    def __init__(self, transitions, reward, discount, policy0=None,
                 max_iter=1000, eval_type=0):
Steven Cordwell's avatar
Steven Cordwell committed
531
532
533
        # Initialise a policy iteration MDP.
        #
        # Set up the MDP, but don't need to worry about epsilon values
534
        MDP.__init__(self, transitions, reward, discount, None, max_iter)
Steven Cordwell's avatar
Steven Cordwell committed
535
        # Check if the user has supplied an initial policy. If not make one.
Steven Cordwell's avatar
Steven Cordwell committed
536
        if policy0 == None:
Steven Cordwell's avatar
Steven Cordwell committed
537
            # Initialise the policy to the one which maximises the expected
Steven Cordwell's avatar
Steven Cordwell committed
538
            # immediate reward
Steven Cordwell's avatar
Steven Cordwell committed
539
540
            null = zeros(self.S)
            self.policy, null = self._bellmanOperator(null)
541
            del null
Steven Cordwell's avatar
Steven Cordwell committed
542
        else:
Steven Cordwell's avatar
Steven Cordwell committed
543
544
            # Use the policy that the user supplied
            # Make sure it is a numpy array
Steven Cordwell's avatar
Steven Cordwell committed
545
            policy0 = array(policy0)
Steven Cordwell's avatar
Steven Cordwell committed
546
            # Make sure the policy is the right size and shape
Steven Cordwell's avatar
Steven Cordwell committed
547
            if not policy0.shape in ((self.S, ), (self.S, 1), (1, self.S)):
548
549
                raise ValueError("PyMDPtolbox: policy0 must a vector with "
                                 "length S.")
Steven Cordwell's avatar
Steven Cordwell committed
550
            # reshape the policy to be a vector
Steven Cordwell's avatar
Steven Cordwell committed
551
            policy0 = policy0.reshape(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
552
            # The policy can only contain integers between 1 and S
553
554
555
556
            if (mod(policy0, 1).any() or (policy0 < 0).any() or
                    (policy0 >= self.S).any()):
                raise ValueError("PyMDPtoolbox: policy0 must be a vector of "
                                 "integers between 1 and S.")
Steven Cordwell's avatar
Steven Cordwell committed
557
558
            else:
                self.policy = policy0
Steven Cordwell's avatar
Steven Cordwell committed
559
        # set the initial values to zero
Steven Cordwell's avatar
Steven Cordwell committed
560
        self.V = zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
561
        # Do some setup depending on the evaluation type
Steven Cordwell's avatar
Steven Cordwell committed
562
        if eval_type in (0, "matrix"):
563
            from numpy.linalg import solve
564
            from scipy.sparse import eye
565
566
            self._speye = eye
            self._lin_eq = solve
Steven Cordwell's avatar
Steven Cordwell committed
567
568
569
570
            self.eval_type = "matrix"
        elif eval_type in (1, "iterative"):
            self.eval_type = "iterative"
        else:
571
572
573
574
            raise ValueError("PyMDPtoolbox: eval_type should be 0 for matrix "
                             "evaluation or 1 for iterative evaluation. "
                             "The strings 'matrix' and 'iterative' can also "
                             "be used.")
575
576
        # Call the iteration method
        self._iterate()
Steven Cordwell's avatar
Steven Cordwell committed
577
    
578
    def _computePpolicyPRpolicy(self):
Steven Cordwell's avatar
Steven Cordwell committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
        # Compute the transition matrix and the reward matrix for a policy.
        #
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
        # P(SxSxA)  = transition matrix 
        #     P could be an array with 3 dimensions or a cell array (1xA),
        #     each cell containing a matrix (SxS) possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
        #     R could be an array with 3 dimensions (SxSxA) or 
        #     a cell array (1xA), each cell containing a sparse matrix (SxS) or
        #     a 2D array(SxA) possibly sparse  
        # policy(S) = a policy
        #
        # Evaluation
        # ----------
        # Ppolicy(SxS)  = transition matrix for policy
        # PRpolicy(S)   = reward matrix for policy
        #
Steven Cordwell's avatar
Steven Cordwell committed
598
599
        Ppolicy = empty((self.S, self.S))
        Rpolicy = zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
600
        for aa in range(self.A): # avoid looping over S
Steven Cordwell's avatar
Steven Cordwell committed
601
602
            # the rows that use action a.
            ind = (self.policy == aa).nonzero()[0]
603
604
            # if no rows use action a, then no need to assign this
            if ind.size > 0:
Steven Cordwell's avatar
Steven Cordwell committed
605
                Ppolicy[ind, :] = self.P[aa][ind, :]
606
                #PR = self._computePR() # an apparently uneeded line, and
Steven Cordwell's avatar
Steven Cordwell committed
607
608
                # perhaps harmful in this implementation c.f.
                # mdp_computePpolicyPRpolicy.m
609
                Rpolicy[ind] = self.R[aa][ind]
Steven Cordwell's avatar
Steven Cordwell committed
610
611
612
613
614
615
616
617
618
619
        # self.R cannot be sparse with the code in its current condition, but
        # it should be possible in the future. Also, if R is so big that its
        # a good idea to use a sparse matrix for it, then converting PRpolicy
        # from a dense to sparse matrix doesn't seem very memory efficient
        if type(self.R) is sparse:
            Rpolicy = sparse(Rpolicy)
        #self.Ppolicy = Ppolicy
        #self.Rpolicy = Rpolicy
        return (Ppolicy, Rpolicy)
    
620
    def _evalPolicyIterative(self, V0=0, epsilon=0.0001, max_iter=10000):
Steven Cordwell's avatar
Steven Cordwell committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        # Evaluate a policy using iteration.
        #
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
        # P(SxSxA)  = transition matrix 
        #    P could be an array with 3 dimensions or 
        #    a cell array (1xS), each cell containing a matrix possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
        #    R could be an array with 3 dimensions (SxSxA) or 
        #    a cell array (1xA), each cell containing a sparse matrix (SxS) or
        #    a 2D array(SxA) possibly sparse  
        # discount  = discount rate in ]0; 1[
        # policy(S) = a policy
        # V0(S)     = starting value function, optional (default : zeros(S,1))
        # epsilon   = epsilon-optimal policy search, upper than 0,
        #    optional (default : 0.0001)
        # max_iter  = maximum number of iteration to be done, upper than 0, 
        #    optional (default : 10000)
        #    
        # Evaluation
        # ----------
        # Vpolicy(S) = value function, associated to a specific policy
        #
        # Notes
        # -----
        # In verbose mode, at each iteration, displays the condition which
        # stopped iterations: epsilon-optimum value function found or maximum
        # number of iterations reached.
        #
651
        if (type(V0) in (int, float)) and (V0 == 0):
Steven Cordwell's avatar
Steven Cordwell committed
652
            policy_V = zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
653
        else:
Steven Cordwell's avatar
Steven Cordwell committed
654
            if (type(V0) in (ndarray)) and (V0.shape == (self.S, 1)):
655
656
                policy_V = V0
            else:
657
658
659
                raise ValueError("PyMDPtoolbox: V0 vector/array type not "
                                 "supported. Use ndarray of matrix column "
                                 "vector length S.")
Steven Cordwell's avatar
Steven Cordwell committed
660
        
661
        policy_P, policy_R = self._computePpolicyPRpolicy()
Steven Cordwell's avatar
Steven Cordwell committed
662
663
664
        
        if self.verbose:
            print('  Iteration    V_variation')
665
        
Steven Cordwell's avatar
Steven Cordwell committed
666
667
668
        itr = 0
        done = False
        while not done:
669
            itr += 1
670
671
            
            Vprev = policy_V
672
            policy_V = policy_R + self.discount * policy_P.dot(Vprev)
673
674
            
            variation = absolute(policy_V - Vprev).max()
Steven Cordwell's avatar
Steven Cordwell committed
675
676
            if self.verbose:
                print('      %s         %s') % (itr, variation)
677
678
679
            
            # ensure |Vn - Vpolicy| < epsilon
            if variation < ((1 - self.discount) / self.discount) * epsilon:
Steven Cordwell's avatar
Steven Cordwell committed
680
681
                done = True
                if self.verbose:
682
683
                    print("PyMDPtoolbox: iterations stopped, epsilon-optimal "
                          "value function.")
Steven Cordwell's avatar
Steven Cordwell committed
684
685
686
            elif itr == max_iter:
                done = True
                if self.verbose:
687
688
                    print("PyMDPtoolbox: iterations stopped by maximum number "
                          "of iteration condition.")
Steven Cordwell's avatar
Steven Cordwell committed
689
        
Steven Cordwell's avatar
Steven Cordwell committed
690
        self.V = policy_V
691
    
692
    def _evalPolicyMatrix(self):
Steven Cordwell's avatar
Steven Cordwell committed
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        # Evaluate the value function of the policy using linear equations.
        #
        # Arguments 
        # ---------
        # Let S = number of states, A = number of actions
        # P(SxSxA) = transition matrix 
        #      P could be an array with 3 dimensions or a cell array (1xA),
        #      each cell containing a matrix (SxS) possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
        #      R could be an array with 3 dimensions (SxSxA) or 
        #      a cell array (1xA), each cell containing a sparse matrix (SxS) or
        #      a 2D array(SxA) possibly sparse  
        # discount = discount rate in ]0; 1[
        # policy(S) = a policy
        #
        # Evaluation
        # ----------
        # Vpolicy(S) = value function of the policy
        #
712
        Ppolicy, Rpolicy = self._computePpolicyPRpolicy()
Steven Cordwell's avatar
Steven Cordwell committed
713
        # V = PR + gPV  => (I-gP)V = PR  => V = inv(I-gP)* PR
714
715
        self.V = self._lin_eq(
            (self._speye(self.S, self.S) - self.discount * Ppolicy), Rpolicy)
Steven Cordwell's avatar
Steven Cordwell committed
716
    
717
    def _iterate(self):
Steven Cordwell's avatar
Steven Cordwell committed
718
719
        # Run the policy iteration algorithm.
        # If verbose the print a header
720
721
        if self.verbose:
            print('  Iteration  Number_of_different_actions')
Steven Cordwell's avatar
Steven Cordwell committed
722
        # Set up the while stopping condition and the current time
Steven Cordwell's avatar
Steven Cordwell committed
723
        done = False
724
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
725
        # loop until a stopping condition is reached
Steven Cordwell's avatar
Steven Cordwell committed
726
        while not done:
727
            self.iter += 1
728
            # these _evalPolicy* functions will update the classes value
Steven Cordwell's avatar
Steven Cordwell committed
729
            # attribute
Steven Cordwell's avatar
Steven Cordwell committed
730
            if self.eval_type == "matrix":
731
                self._evalPolicyMatrix()
Steven Cordwell's avatar
Steven Cordwell committed
732
            elif self.eval_type == "iterative":
733
                self._evalPolicyIterative()
Steven Cordwell's avatar
Steven Cordwell committed
734
735
            # This should update the classes policy attribute but leave the
            # value alone
736
            policy_next, null = self._bellmanOperator()
737
            del null
Steven Cordwell's avatar
Steven Cordwell committed
738
739
            # calculate in how many places does the old policy disagree with
            # the new policy
740
            n_different = (policy_next != self.policy).sum()
Steven Cordwell's avatar
Steven Cordwell committed
741
            # if verbose then continue printing a table
742
            if self.verbose:
743
744
                print('       %s                 %s') % (self.iter,
                                                         n_different)
Steven Cordwell's avatar
Steven Cordwell committed
745
746
            # Once the policy is unchanging of the maximum number of 
            # of iterations has been reached then stop
747
            if n_different == 0:
Steven Cordwell's avatar
Steven Cordwell committed
748
                done = True
749
                if self.verbose:
750
751
                    print("PyMDPtoolbox: iterations stopped, unchanging "
                          "policy found.")
752
753
754
            elif (self.iter == self.max_iter):
                done = True 
                if self.verbose:
755
756
                    print("PyMDPtoolbox: iterations stopped by maximum number "
                          "of iteration condition.")
757
758
            else:
                self.policy = policy_next
Steven Cordwell's avatar
Steven Cordwell committed
759
        # update the time to return th computation time
760
        self.time = time() - self.time
Steven Cordwell's avatar
Steven Cordwell committed
761
        # store value and policy as tuples
762
763
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
764

765
class PolicyIterationModified(PolicyIteration):
766
    
767
    """A discounted MDP  solved using a modifified policy iteration algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
768
769
770
771
772
    
    Arguments
    ---------
    Let S = number of states, A = number of actions
    P(SxSxA) = transition matrix 
773
774
             P could be an array with 3 dimensions or a cell array (1xA),
             each cell containing a matrix (SxS) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
    R(SxSxA) or (SxA) = reward matrix
             R could be an array with 3 dimensions (SxSxA) or 
             a cell array (1xA), each cell containing a sparse matrix (SxS) or
             a 2D array(SxA) possibly sparse  
    discount = discount rate, in ]0, 1[
    policy0(S) = starting policy, optional 
    max_iter = maximum number of iteration to be done, upper than 0, 
             optional (default 1000)
    eval_type = type of function used to evaluate policy: 
             0 for mdp_eval_policy_matrix, else mdp_eval_policy_iterative
             optional (default 0)
    
    Data Attributes
    ---------------
    V(S)   = value function 
    policy(S) = optimal policy
    iter     = number of done iterations
    cpu_time = used CPU time
    
    Notes
    -----
    In verbose mode, at each iteration, displays the number 
    of differents actions between policy n-1 and n
    
    Examples
    --------
801
802
803
804
805
806
807
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.forest()
    >>> pim = mdptoolbox.mdp.PolicyIterationModified(P, R, 0.9)
    >>> pim.policy
    FIXME
    >>> pim.V
    FIXME
808
    
Steven Cordwell's avatar
Steven Cordwell committed
809
    """
810
    
811
812
    def __init__(self, transitions, reward, discount, epsilon=0.01,
                 max_iter=10):
813
        # Initialise a (modified) policy iteration MDP.
Steven Cordwell's avatar
Steven Cordwell committed
814
        
815
816
817
        # Maybe its better not to subclass from PolicyIteration, because the
        # initialisation of the two are quite different. eg there is policy0
        # being calculated here which doesn't need to be. The only thing that
818
        # is needed from the PolicyIteration class is the _evalPolicyIterative
819
        # function. Perhaps there is a better way to do it?
820
821
        PolicyIteration.__init__(self, transitions, reward, discount, None,
                                 max_iter, 1)
822
        
823
824
825
826
        # PolicyIteration doesn't pass epsilon to MDP.__init__() so we will
        # check it here
        if type(epsilon) in (int, float):
            if epsilon <= 0:
827
828
                raise ValueError("PyMDPtoolbox: epsilon must be greater than "
                                 "0.")
829
        else:
830
831
            raise ValueError("PyMDPtoolbox: epsilon must be a positive real "
                             "number greater than zero.")
832
        
833
834
        # computation of threshold of variation for V for an epsilon-optimal
        # policy
835
836
837
838
839
        if self.discount != 1:
            self.thresh = epsilon * (1 - self.discount) / self.discount
        else:
            self.thresh = epsilon
        
840
841
        self.epsilon = epsilon
        
842
        if discount == 1:
Steven Cordwell's avatar
Steven Cordwell committed
843
            self.V = zeros((self.S, 1))
844
845
        else:
            # min(min()) is not right
846
            self.V = 1 / (1 - discount) * self.R.min() * ones((self.S, 1))
847
848
849
        
        # Call the iteration method
        self._iterate()
Steven Cordwell's avatar
Steven Cordwell committed
850
    
851
    def _iterate(self):
852
        # Run the modified policy iteration algorithm.
853
854
        
        if self.verbose:
855
            print('\tIteration\tV-variation')
856
        
Steven Cordwell's avatar
Steven Cordwell committed
857
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
858
        
859
860
        done = False
        while not done:
861
            self.iter += 1
862
            
863
            self.policy, Vnext = self._bellmanOperator()
864
            #[Ppolicy, PRpolicy] = mdp_computePpolicyPRpolicy(P, PR, policy);
865
            
866
            variation = getSpan(Vnext - self.V)
867
            if self.verbose:
868
                print("\t%s\t%s" % (self.iter, variation))
869
            
Steven Cordwell's avatar
Steven Cordwell committed
870
            self.V = Vnext
Steven Cordwell's avatar
Steven Cordwell committed
871
            if variation < self.thresh:
872
873
874
875
                done = True
            else:
                is_verbose = False
                if self.verbose:
876
                    self.setSilent()
877
878
                    is_verbose = True
                
879
                self._evalPolicyIterative(self.V, self.epsilon, self.max_iter)
880
881
                
                if is_verbose:
882
                    self.setVerbose()
883
        
884
        self.time = time() - self.time
885
886
        
        # store value and policy as tuples
887
888
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
889
890

class QLearning(MDP):
891
    
892
    """A discounted MDP solved using the Q learning algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
    
    Let S = number of states, A = number of actions
    
    Parameters
    ----------
    P : transition matrix (SxSxA)
        P could be an array with 3 dimensions or a cell array (1xA), each
        cell containing a sparse matrix (SxS)
    R : reward matrix(SxSxA) or (SxA)
        R could be an array with 3 dimensions (SxSxA) or a cell array
        (1xA), each cell containing a sparse matrix (SxS) or a 2D
        array(SxA) possibly sparse
    discount : discount rate
        in ]0; 1[    
    n_iter : number of iterations to execute (optional).
908
909
        Default value = 10000; it is an integer greater than the default
        value.
Steven Cordwell's avatar
Steven Cordwell committed
910
911
912
913
914
    
    Results
    -------
    Q : learned Q matrix (SxA) 
    
Steven Cordwell's avatar
Steven Cordwell committed
915
    V : learned value function (S).
Steven Cordwell's avatar
Steven Cordwell committed
916
917
918
919
920
921
922
    
    policy : learned optimal policy (S).
    
    mean_discrepancy : vector of V discrepancy mean over 100 iterations
        Then the length of this vector for the default value of N is 100 
        (N/100).

923
    Examples
Steven Cordwell's avatar
Steven Cordwell committed
924
    ---------
925
926
927
    >>> # These examples are reproducible only if random seed is set to 0 in
    >>> # both the random and numpy.random modules.
    >>> import numpy as np
928
    >>> import mdptoolbox, mdptoolbox.example
929
    >>> np.random.seed(0)
930
931
    >>> P, R = mdptoolbox.example.forest()
    >>> ql = mdptoolbox.mdp.QLearning(P, R, 0.96)
Steven Cordwell's avatar
Steven Cordwell committed
932
    >>> ql.Q
933
934
935
    array([[ 68.38037354,  43.24888454],
           [ 72.37777922,  42.75549145],
           [ 77.02892702,  64.68712932]])
Steven Cordwell's avatar
Steven Cordwell committed
936
    >>> ql.V
937
    (68.38037354422798, 72.37777921607258, 77.02892701616531)
Steven Cordwell's avatar
Steven Cordwell committed
938
    >>> ql.policy
939
    (0, 0, 0)
Steven Cordwell's avatar
Steven Cordwell committed
940
    
941
    >>> import mdptoolbox
Steven Cordwell's avatar
Steven Cordwell committed
942
943
944
    >>> import numpy as np
    >>> P = np.array([[[0.5, 0.5],[0.8, 0.2]],[[0, 1],[0.1, 0.9]]])
    >>> R = np.array([[5, 10], [-1, 2]])
945
    >>> np.random.seed(0)
946
    >>> pim = mdptoolbox.mdp.QLearning(P, R, 0.9)
Steven Cordwell's avatar
Steven Cordwell committed
947
    >>> ql.Q
948
949
    array([[ 39.933691  ,  43.17543338],
           [ 36.94394224,  35.42568056]])
Steven Cordwell's avatar
Steven Cordwell committed
950
    >>> ql.V
951
    (43.17543338090149, 36.943942243204454)
Steven Cordwell's avatar
Steven Cordwell committed
952
    >>> ql.policy
953
    (1, 0)
954
    
Steven Cordwell's avatar
Steven Cordwell committed
955
956
957
    """
    
    def __init__(self, transitions, reward, discount, n_iter=10000):
958
        # Initialise a Q-learning MDP.
Steven Cordwell's avatar
Steven Cordwell committed
959
        
960
961
        # The following check won't be done in MDP()'s initialisation, so let's
        # do it here
962
963
964
        self.max_iter = int(n_iter)
        assert self.max_iter >= 10000, "PyMDPtoolbox: n_iter should be " \
                                        "greater than 10000."
Steven Cordwell's avatar
Steven Cordwell committed
965
        
966
        # We don't want to send this to MDP because _computePR should not be
967
        # run on it, so check that it defines an MDP
968
969
        check(transitions, reward)
        
970
971
        # Store P, S, and A
        self._computeP(transitions)
972
973
974
975
976
        
        self.R = reward
        
        self.discount = discount
        
Steven Cordwell's avatar
Steven Cordwell committed
977
978
979
980
        # Initialisations
        self.Q = zeros((self.S, self.A))
        self.mean_discrepancy = []
        
981
982
983
984
        # Call the iteration method
        self._iterate()
        
    def _iterate(self):
985
        # Run the Q-learning algoritm.
986
987
        discrepancy = []
        
Steven Cordwell's avatar
Steven Cordwell committed
988
989
990
        self.time = time()
        
        # initial state choice
991
        s = randint(0, self.S)
Steven Cordwell's avatar
Steven Cordwell committed
992
        
993
        for n in range(1, self.max_iter + 1):
Steven Cordwell's avatar
Steven Cordwell committed
994
995
996
            
            # Reinitialisation of trajectories every 100 transitions
            if ((n % 100) == 0):
997
                s = randint(0, self.S)
Steven Cordwell's avatar
Steven Cordwell committed
998
999
1000
1001
1002
            
            # Action choice : greedy with increasing probability
            # probability 1-(1/log(n+2)) can be changed
            pn = random()
            if (pn < (1 - (1 / log(n + 2)))):
Steven Cordwell's avatar
Steven Cordwell committed
1003
1004