mdp.py 57 KB
Newer Older
Steven Cordwell's avatar
Steven Cordwell committed
1
# -*- coding: utf-8 -*-
Steven Cordwell's avatar
Steven Cordwell committed
2
"""Markov Decision Process (MDP) Toolbox
3
=====================================
4

Steven Cordwell's avatar
Steven Cordwell committed
5
6
The MDP toolbox provides classes and functions for the resolution of
descrete-time Markov Decision Processes.
Steven Cordwell's avatar
Steven Cordwell committed
7

Steven Cordwell's avatar
Steven Cordwell committed
8
9
10
11
12
Available classes
-----------------
MDP
    Base Markov decision process class
FiniteHorizon
Steven Cordwell's avatar
Steven Cordwell committed
13
    Backwards induction finite horizon MDP
Steven Cordwell's avatar
Steven Cordwell committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
LP
    Linear programming MDP
PolicyIteration
    Policy iteration MDP
PolicyIterationModified
    Modified policy iteration MDP
QLearning
    Q-learning MDP
RelativeValueIteration
    Relative value iteration MDP
ValueIteration
    Value iteration MDP
ValueIterationGS
    Gauss-Seidel value iteration MDP
Steven Cordwell's avatar
Steven Cordwell committed
28

Steven Cordwell's avatar
Steven Cordwell committed
29
30
31
32
33
34
35
36
37
38
Available functions
-------------------
check
    Check that an MDP is properly defined
checkSquareStochastic
    Check that a matrix is square and stochastic
exampleForest
    A simple forest management example
exampleRand
    A random example
Steven Cordwell's avatar
Steven Cordwell committed
39

Steven Cordwell's avatar
Steven Cordwell committed
40
41
42
43
44
How to use the documentation
----------------------------
Documentation is available both as docstrings provided with the code and
in html or pdf format from 
`The MDP toolbox homepage <http://www.somewhere.com>`_. The docstring
45
examples assume that the `mdp` module has been imported imported like so::
Steven Cordwell's avatar
Steven Cordwell committed
46

47
  >>> import mdptoolbox.mdp as mdp
Steven Cordwell's avatar
Steven Cordwell committed
48
49
50
51
52

Code snippets are indicated by three greater-than signs::

  >>> x = 17
  >>> x = x + 1
53
54
  >>> x
  18
Steven Cordwell's avatar
Steven Cordwell committed
55
56
57
58
59

The documentation can be displayed with
`IPython <http://ipython.scipy.org>`_. For example, to view the docstring of
the ValueIteration class use ``mdp.ValueIteration?<ENTER>``, and to view its
source code use ``mdp.ValueIteration??<ENTER>``.
60

61
62
63
Acknowledgments
---------------
This module is modified from the MDPtoolbox (c) 2009 INRA available at 
Steven Cordwell's avatar
Steven Cordwell committed
64
http://www.inra.fr/mia/T/MDPtoolbox/.
65

Steven Cordwell's avatar
Steven Cordwell committed
66
67
"""

68
69
# Copyright (c) 2011-2013 Steven A. W. Cordwell
# Copyright (c) 2009 INRA
Steven Cordwell's avatar
Steven Cordwell committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# 
# All rights reserved.
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 
#   * Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#   * Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#   * Neither the name of the <ORGANIZATION> nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
# 
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

Steven Cordwell's avatar
Steven Cordwell committed
97
98
99
from math import ceil, log, sqrt
from time import time

100
101
from numpy import absolute, array, empty, mean, mod, multiply
from numpy import ndarray, ones, zeros
102
from numpy.random import randint, random
Steven Cordwell's avatar
Steven Cordwell committed
103
from scipy.sparse import csr_matrix as sparse
Steven Cordwell's avatar
Steven Cordwell committed
104

105
from utils import check, getSpan
106

Steven Cordwell's avatar
Steven Cordwell committed
107
class MDP(object):
108
    
Steven Cordwell's avatar
Steven Cordwell committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    """A Markov Decision Problem.
    
    Parameters
    ----------
    transitions : array
            transition probability matrices
    reward : array
            reward matrices
    discount : float or None
            discount factor
    epsilon : float or None
            stopping criteria
    max_iter : int or None
            maximum number of iterations
    
    Attributes
    ----------
    P : array
        Transition probability matrices
    R : array
        Reward matrices
    V : list
        Value function
    discount : float
        b
    max_iter : int
        a
    policy : list
        a
    time : float
        a
    verbose : logical
        a
    
    Methods
    -------
    iterate
        To be implemented in child classes, raises exception
    setSilent
        Turn the verbosity off
    setVerbose
        Turn the verbosity on
    
    """
Steven Cordwell's avatar
Steven Cordwell committed
153
    
154
    def __init__(self, transitions, reward, discount, epsilon, max_iter):
155
        # Initialise a MDP based on the input parameters.
156
        
Steven Cordwell's avatar
Steven Cordwell committed
157
158
        # if the discount is None then the algorithm is assumed to not use it
        # in its computations
159
160
161
162
163
164
        if discount is not None:
            self.discount = float(discount)
            assert 0.0 < self.discount <= 1.0, "Discount rate must be in ]0; 1]"
            if self.discount == 1:
                print("PyMDPtoolbox WARNING: check conditions of convergence. "
                      "With no discount, convergence is not always assumed.")
Steven Cordwell's avatar
Steven Cordwell committed
165
166
        # if the max_iter is None then the algorithm is assumed to not use it
        # in its computations
167
168
169
170
        if max_iter is not None:
            self.max_iter = int(max_iter)
            assert self.max_iter > 0, "The maximum number of iterations " \
                                      "must be greater than 0."
Steven Cordwell's avatar
Steven Cordwell committed
171
        # check that epsilon is something sane
172
173
174
        if epsilon is not None:
            self.epsilon = float(epsilon)
            assert self.epsilon > 0, "Epsilon must be greater than 0."
Steven Cordwell's avatar
Steven Cordwell committed
175
176
177
178
        # we run a check on P and R to make sure they are describing an MDP. If
        # an exception isn't raised then they are assumed to be correct.
        check(transitions, reward)
        # computePR will assign the variables self.S, self.A, self.P and self.R
179
        self._computePR(transitions, reward)
Steven Cordwell's avatar
Steven Cordwell committed
180
181
182
183
        # the verbosity is by default turned off
        self.verbose = False
        # Initially the time taken to perform the computations is set to None
        self.time = None
184
185
        # set the initial iteration count to zero
        self.iter = 0
Steven Cordwell's avatar
Steven Cordwell committed
186
        # V should be stored as a vector ie shape of (S,) or (1, S)
Steven Cordwell's avatar
Steven Cordwell committed
187
        self.V = None
Steven Cordwell's avatar
Steven Cordwell committed
188
        # policy can also be stored as a vector
Steven Cordwell's avatar
Steven Cordwell committed
189
        self.policy = None
Steven Cordwell's avatar
Steven Cordwell committed
190
    
191
192
193
194
195
196
    def __repr__(self):
        P_repr = "P: \n"
        R_repr = "R: \n"
        for aa in range(self.A):
            P_repr += repr(self.P[aa]) + "\n"
            R_repr += repr(self.R[aa]) + "\n"
197
        return(P_repr + "\n" + R_repr)
198
    
199
    def _bellmanOperator(self, V=None):
Steven Cordwell's avatar
Steven Cordwell committed
200
        # Apply the Bellman operator on the value function.
201
        # 
Steven Cordwell's avatar
Steven Cordwell committed
202
        # Updates the value function and the Vprev-improving policy.
203
        # 
Steven Cordwell's avatar
Steven Cordwell committed
204
205
206
207
        # Returns: (policy, value), tuple of new policy and its value
        #
        # If V hasn't been sent into the method, then we assume to be working
        # on the objects V attribute
208
209
        if V is None:
            # this V should be a reference to the data rather than a copy
210
211
            V = self.V
        else:
Steven Cordwell's avatar
Steven Cordwell committed
212
            # make sure the user supplied V is of the right shape
213
            try:
214
215
                assert V.shape in ((self.S,), (1, self.S)), "V is not the " \
                    "right shape (Bellman operator)."
216
            except AttributeError:
217
                raise TypeError("V must be a numpy array or matrix.")
218
219
220
221
        # Looping through each action the the Q-value matrix is calculated.
        # P and V can be any object that supports indexing, so it is important
        # that you know they define a valid MDP before calling the
        # _bellmanOperator method. Otherwise the results will be meaningless.
Steven Cordwell's avatar
Steven Cordwell committed
222
        Q = empty((self.A, self.S))
Steven Cordwell's avatar
Steven Cordwell committed
223
        for aa in range(self.A):
Steven Cordwell's avatar
Steven Cordwell committed
224
            Q[aa] = self.R[aa] + self.discount * self.P[aa].dot(V)
Steven Cordwell's avatar
Steven Cordwell committed
225
        # Get the policy and value, for now it is being returned but...
226
        # Which way is better?
227
        # 1. Return, (policy, value)
228
        return (Q.argmax(axis=0), Q.max(axis=0))
Steven Cordwell's avatar
Steven Cordwell committed
229
230
        # 2. update self.policy and self.V directly
        # self.V = Q.max(axis=1)
231
        # self.policy = Q.argmax(axis=1)
Steven Cordwell's avatar
Steven Cordwell committed
232
    
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    def _computeP(self, P):
        # Set self.P as a tuple of length A, with each element storing an S×S
        # matrix.
        self.A = len(P)
        try:
            if P.ndim == 3:
                self.S = P.shape[1]
            else:
               self.S = P[0].shape[0]
        except AttributeError:
            self.S = P[0].shape[0]
        # convert P to a tuple of numpy arrays
        self.P = tuple([P[aa] for aa in range(self.A)])
    
247
    def _computePR(self, P, R):
Steven Cordwell's avatar
Steven Cordwell committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        # Compute the reward for the system in one state chosing an action.
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
        #    P(SxSxA)  = transition matrix 
        #        P could be an array with 3 dimensions or  a cell array (1xA), 
        #        each cell containing a matrix (SxS) possibly sparse
        #    R(SxSxA) or (SxA) = reward matrix
        #        R could be an array with 3 dimensions (SxSxA) or  a cell array 
        #        (1xA), each cell containing a sparse matrix (SxS) or a 2D 
        #        array(SxA) possibly sparse  
        # Evaluation
        # ----------
        #    PR(SxA)   = reward matrix
        #
263
        # We assume that P and R define a MDP i,e. assumption is that
Steven Cordwell's avatar
Steven Cordwell committed
264
        # check(P, R) has already been run and doesn't fail.
265
        #
266
267
        # First compute store P, S, and A
        self._computeP(P)
Steven Cordwell's avatar
Steven Cordwell committed
268
269
        # Set self.R as a tuple of length A, with each element storing an 1×S
        # vector.
270
        try:
271
            if R.ndim == 2:
272
273
                self.R = tuple([array(R[:, aa]).reshape(self.S)
                                for aa in range(self.A)])
Steven Cordwell's avatar
Steven Cordwell committed
274
            else:
275
276
                self.R = tuple([multiply(P[aa], R[aa]).sum(1).reshape(self.S)
                                for aa in xrange(self.A)])
277
        except AttributeError:
278
279
            self.R = tuple([multiply(P[aa], R[aa]).sum(1).reshape(self.S)
                            for aa in xrange(self.A)])
280
    
281
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
282
        # Raise error because child classes should implement this function.
283
        raise NotImplementedError("You should create a run() method.")
Steven Cordwell's avatar
Steven Cordwell committed
284
    
Steven Cordwell's avatar
Steven Cordwell committed
285
    def setSilent(self):
286
        """Set the MDP algorithm to silent mode."""
Steven Cordwell's avatar
Steven Cordwell committed
287
288
289
        self.verbose = False
    
    def setVerbose(self):
290
        """Set the MDP algorithm to verbose mode."""
Steven Cordwell's avatar
Steven Cordwell committed
291
        self.verbose = True
Steven Cordwell's avatar
Steven Cordwell committed
292
293

class FiniteHorizon(MDP):
294
    
Steven Cordwell's avatar
Steven Cordwell committed
295
    """A MDP solved using the finite-horizon backwards induction algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
296
297
    
    Let S = number of states, A = number of actions
Steven Cordwell's avatar
Steven Cordwell committed
298
299
300
    
    Parameters
    ----------
Steven Cordwell's avatar
Steven Cordwell committed
301
    P(SxSxA) = transition matrix 
302
303
             P could be an array with 3 dimensions ora cell array (1xA),
             each cell containing a matrix (SxS) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
304
305
306
307
308
309
310
    R(SxSxA) or (SxA) = reward matrix
             R could be an array with 3 dimensions (SxSxA) or 
             a cell array (1xA), each cell containing a sparse matrix (SxS) or
             a 2D array(SxA) possibly sparse  
    discount = discount factor, in ]0, 1]
    N        = number of periods, upper than 0
    h(S)     = terminal reward, optional (default [0; 0; ... 0] )
Steven Cordwell's avatar
Steven Cordwell committed
311
312
    
    Attributes
Steven Cordwell's avatar
Steven Cordwell committed
313
    ----------
Steven Cordwell's avatar
Steven Cordwell committed
314
315
316
    
    Methods
    -------
Steven Cordwell's avatar
Steven Cordwell committed
317
318
319
320
321
322
323
324
325
326
327
328
329
    V(S,N+1)     = optimal value function
                 V(:,n) = optimal value function at stage n
                        with stage in 1, ..., N
                        V(:,N+1) = value function for terminal stage 
    policy(S,N)  = optimal policy
                 policy(:,n) = optimal policy at stage n
                        with stage in 1, ...,N
                        policy(:,N) = policy for stage N
    cpu_time = used CPU time
  
    Notes
    -----
    In verbose mode, displays the current stage and policy transpose.
330
    
Steven Cordwell's avatar
Steven Cordwell committed
331
332
    Examples
    --------
333
334
335
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.forest()
    >>> fh = mdptoolbox.mdp.FiniteHorizon(P, R, 0.9, 3)
336
    >>> fh.run()
Steven Cordwell's avatar
Steven Cordwell committed
337
338
339
340
341
342
343
344
    >>> fh.V
    array([[ 2.6973,  0.81  ,  0.    ,  0.    ],
           [ 5.9373,  3.24  ,  1.    ,  0.    ],
           [ 9.9373,  7.24  ,  4.    ,  0.    ]])
    >>> fh.policy
    array([[0, 0, 0],
           [0, 0, 1],
           [0, 0, 0]])
345
    
Steven Cordwell's avatar
Steven Cordwell committed
346
    """
Steven Cordwell's avatar
Steven Cordwell committed
347

Steven Cordwell's avatar
Steven Cordwell committed
348
    def __init__(self, transitions, reward, discount, N, h=None):
349
        # Initialise a finite horizon MDP.
350
351
        self.N = int(N)
        assert self.N > 0, 'PyMDPtoolbox: N must be greater than 0.'
Steven Cordwell's avatar
Steven Cordwell committed
352
        # Initialise the base class
353
        MDP.__init__(self, transitions, reward, discount, None, None)
Steven Cordwell's avatar
Steven Cordwell committed
354
355
        # remove the iteration counter, it is not meaningful for backwards
        # induction
356
        del self.iter
Steven Cordwell's avatar
Steven Cordwell committed
357
        # There are value vectors for each time step up to the horizon
358
        self.V = zeros((self.S, N + 1))
Steven Cordwell's avatar
Steven Cordwell committed
359
360
361
362
363
        # There are policy vectors for each time step before the horizon, when
        # we reach the horizon we don't need to make decisions anymore.
        self.policy = empty((self.S, N), dtype=int)
        # Set the reward for the final transition to h, if specified.
        if h is not None:
364
            self.V[:, N] = h
365
        # Call the iteration method
366
        #self.run()
367
        
368
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
369
        # Run the finite horizon algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
370
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
371
        # loop through each time period
372
        for n in range(self.N):
Steven Cordwell's avatar
Steven Cordwell committed
373
374
375
            W, X = self._bellmanOperator(self.V[:, self.N - n])
            self.V[:, self.N - n - 1] = X
            self.policy[:, self.N - n - 1] = W
Steven Cordwell's avatar
Steven Cordwell committed
376
            if self.verbose:
377
378
                print("stage: %s ... policy transpose : %s") % (
                    self.N - n, self.policy[:, self.N - n -1].tolist())
Steven Cordwell's avatar
Steven Cordwell committed
379
        # update time spent running
Steven Cordwell's avatar
Steven Cordwell committed
380
        self.time = time() - self.time
Steven Cordwell's avatar
Steven Cordwell committed
381
382
383
384
385
386
387
388
389
390
        # After this we could create a tuple of tuples for the values and 
        # policies.
        #V = []
        #p = []
        #for n in xrange(self.N):
        #    V.append()
        #    p.append()
        #V.append()
        #self.V = tuple(V)
        #self.policy = tuple(p)
Steven Cordwell's avatar
Steven Cordwell committed
391
392

class LP(MDP):
393
    
394
    """A discounted MDP soloved using linear programming.
Steven Cordwell's avatar
Steven Cordwell committed
395
396
397
398
399

    Arguments
    ---------
    Let S = number of states, A = number of actions
    P(SxSxA) = transition matrix 
400
401
             P could be an array with 3 dimensions or a cell array (1xA),
             each cell containing a matrix (SxS) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
    R(SxSxA) or (SxA) = reward matrix
             R could be an array with 3 dimensions (SxSxA) or 
             a cell array (1xA), each cell containing a sparse matrix (SxS) or
             a 2D array(SxA) possibly sparse  
    discount = discount rate, in ]0; 1[
    h(S)     = terminal reward, optional (default [0; 0; ... 0] )
    
    Evaluation
    ----------
    V(S)   = optimal values
    policy(S) = optimal policy
    cpu_time = used CPU time
    
    Notes    
    -----
    In verbose mode, displays the current stage and policy transpose.
    
    Examples
    --------
421
422
423
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.forest()
    >>> lp = mdptoolbox.mdp.LP(P, R, 0.9)
424
    >>> lp.run()
425
    
Steven Cordwell's avatar
Steven Cordwell committed
426
    """
Steven Cordwell's avatar
Steven Cordwell committed
427

Steven Cordwell's avatar
Steven Cordwell committed
428
    def __init__(self, transitions, reward, discount):
429
        # Initialise a linear programming MDP.
Steven Cordwell's avatar
Steven Cordwell committed
430
        # import some functions from cvxopt and set them as object methods
Steven Cordwell's avatar
Steven Cordwell committed
431
432
        try:
            from cvxopt import matrix, solvers
433
434
            self._linprog = solvers.lp
            self._cvxmat = matrix
Steven Cordwell's avatar
Steven Cordwell committed
435
        except ImportError:
436
437
            raise ImportError("The python module cvxopt is required to use "
                              "linear programming functionality.")
Steven Cordwell's avatar
Steven Cordwell committed
438
439
        # we also need diagonal matrices, and using a sparse one may be more
        # memory efficient
Steven Cordwell's avatar
Steven Cordwell committed
440
        from scipy.sparse import eye as speye
441
        self._speye = speye
Steven Cordwell's avatar
Steven Cordwell committed
442
        # initialise the MDP. epsilon and max_iter are not needed
443
        MDP.__init__(self, transitions, reward, discount, None, None)
Steven Cordwell's avatar
Steven Cordwell committed
444
        # Set the cvxopt solver to be quiet by default, but ...
445
        # this doesn't do what I want it to do c.f. issue #3
446
447
        if not self.verbose:
            solvers.options['show_progress'] = False
448
        # Call the iteration method
449
        #self.run()
450
    
451
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
452
        #Run the linear programming algorithm.
453
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
454
        # The objective is to resolve : min V / V >= PR + discount*P*V
455
456
        # The function linprog of the optimisation Toolbox of Mathworks
        # resolves :
Steven Cordwell's avatar
Steven Cordwell committed
457
        # min f'* x / M * x <= b
458
459
460
461
        # So the objective could be expressed as :
        # min V / (discount*P-I) * V <= - PR
        # To avoid loop on states, the matrix M is structured following actions
        # M(A*S,S)
462
463
464
        f = self._cvxmat(ones((self.S, 1)))
        h = self._cvxmat(self.R.reshape(self.S * self.A, 1, order="F"), tc='d')
        M = zeros((self.A * self.S, self.S))
Steven Cordwell's avatar
Steven Cordwell committed
465
466
        for aa in range(self.A):
            pos = (aa + 1) * self.S
467
468
469
            M[(pos - self.S):pos, :] = (
                self.discount * self.P[aa] - self._speye(self.S, self.S))
        M = self._cvxmat(M)
470
471
472
        # Using the glpk option will make this behave more like Octave
        # (Octave uses glpk) and perhaps Matlab. If solver=None (ie using the 
        # default cvxopt solver) then V agrees with the Octave equivalent
Steven Cordwell's avatar
Steven Cordwell committed
473
        # only to 10e-8 places. This assumes glpk is installed of course.
Steven Cordwell's avatar
Steven Cordwell committed
474
        self.V = array(self._linprog(f, M, -h, solver='glpk')['x'])
Steven Cordwell's avatar
Steven Cordwell committed
475
        # apply the Bellman operator
476
        self.policy, self.V =  self._bellmanOperator()
Steven Cordwell's avatar
Steven Cordwell committed
477
        # update the time spent solving
Steven Cordwell's avatar
Steven Cordwell committed
478
        self.time = time() - self.time
479
        # store value and policy as tuples
480
481
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
482
483

class PolicyIteration(MDP):
484
    
485
    """A discounted MDP solved using the policy iteration algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
486
    
Steven Cordwell's avatar
Steven Cordwell committed
487
488
489
490
    Arguments
    ---------
    Let S = number of states, A = number of actions
    P(SxSxA) = transition matrix 
491
492
             P could be an array with 3 dimensions or a cell array (1xA),
             each cell containing a matrix (SxS) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    R(SxSxA) or (SxA) = reward matrix
             R could be an array with 3 dimensions (SxSxA) or 
             a cell array (1xA), each cell containing a sparse matrix (SxS) or
             a 2D array(SxA) possibly sparse  
    discount = discount rate, in ]0, 1[
    policy0(S) = starting policy, optional 
    max_iter = maximum number of iteration to be done, upper than 0, 
             optional (default 1000)
    eval_type = type of function used to evaluate policy: 
             0 for mdp_eval_policy_matrix, else mdp_eval_policy_iterative
             optional (default 0)
             
    Evaluation
    ----------
    V(S)   = value function 
    policy(S) = optimal policy
    iter     = number of done iterations
    cpu_time = used CPU time
    
    Notes
    -----
    In verbose mode, at each iteration, displays the number 
    of differents actions between policy n-1 and n
    
Steven Cordwell's avatar
Steven Cordwell committed
517
518
    Examples
    --------
519
520
521
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.rand()
    >>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)
522
    >>> pi.run()
523
    
524
525
    >>> P, R = mdptoolbox.example.forest()
    >>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)
526
    >>> pi.run()
Steven Cordwell's avatar
Steven Cordwell committed
527
    >>> pi.V
528
    (26.244000000000018, 29.48400000000002, 33.484000000000016)
Steven Cordwell's avatar
Steven Cordwell committed
529
    >>> pi.policy
530
    (0, 0, 0)
Steven Cordwell's avatar
Steven Cordwell committed
531
    """
Steven Cordwell's avatar
Steven Cordwell committed
532
    
533
534
    def __init__(self, transitions, reward, discount, policy0=None,
                 max_iter=1000, eval_type=0):
Steven Cordwell's avatar
Steven Cordwell committed
535
536
537
        # Initialise a policy iteration MDP.
        #
        # Set up the MDP, but don't need to worry about epsilon values
538
        MDP.__init__(self, transitions, reward, discount, None, max_iter)
Steven Cordwell's avatar
Steven Cordwell committed
539
        # Check if the user has supplied an initial policy. If not make one.
Steven Cordwell's avatar
Steven Cordwell committed
540
        if policy0 == None:
Steven Cordwell's avatar
Steven Cordwell committed
541
            # Initialise the policy to the one which maximises the expected
Steven Cordwell's avatar
Steven Cordwell committed
542
            # immediate reward
Steven Cordwell's avatar
Steven Cordwell committed
543
544
            null = zeros(self.S)
            self.policy, null = self._bellmanOperator(null)
545
            del null
Steven Cordwell's avatar
Steven Cordwell committed
546
        else:
Steven Cordwell's avatar
Steven Cordwell committed
547
548
            # Use the policy that the user supplied
            # Make sure it is a numpy array
Steven Cordwell's avatar
Steven Cordwell committed
549
            policy0 = array(policy0)
Steven Cordwell's avatar
Steven Cordwell committed
550
            # Make sure the policy is the right size and shape
Steven Cordwell's avatar
Steven Cordwell committed
551
            if not policy0.shape in ((self.S, ), (self.S, 1), (1, self.S)):
552
553
                raise ValueError("PyMDPtolbox: policy0 must a vector with "
                                 "length S.")
Steven Cordwell's avatar
Steven Cordwell committed
554
            # reshape the policy to be a vector
Steven Cordwell's avatar
Steven Cordwell committed
555
            policy0 = policy0.reshape(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
556
            # The policy can only contain integers between 1 and S
557
558
559
560
            if (mod(policy0, 1).any() or (policy0 < 0).any() or
                    (policy0 >= self.S).any()):
                raise ValueError("PyMDPtoolbox: policy0 must be a vector of "
                                 "integers between 1 and S.")
Steven Cordwell's avatar
Steven Cordwell committed
561
562
            else:
                self.policy = policy0
Steven Cordwell's avatar
Steven Cordwell committed
563
        # set the initial values to zero
Steven Cordwell's avatar
Steven Cordwell committed
564
        self.V = zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
565
        # Do some setup depending on the evaluation type
Steven Cordwell's avatar
Steven Cordwell committed
566
        if eval_type in (0, "matrix"):
567
            from numpy.linalg import solve
568
            from scipy.sparse import eye
569
570
            self._speye = eye
            self._lin_eq = solve
Steven Cordwell's avatar
Steven Cordwell committed
571
572
573
574
            self.eval_type = "matrix"
        elif eval_type in (1, "iterative"):
            self.eval_type = "iterative"
        else:
575
576
577
578
            raise ValueError("PyMDPtoolbox: eval_type should be 0 for matrix "
                             "evaluation or 1 for iterative evaluation. "
                             "The strings 'matrix' and 'iterative' can also "
                             "be used.")
579
        # Call the iteration method
580
        #self.run()
Steven Cordwell's avatar
Steven Cordwell committed
581
    
582
    def _computePpolicyPRpolicy(self):
Steven Cordwell's avatar
Steven Cordwell committed
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
        # Compute the transition matrix and the reward matrix for a policy.
        #
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
        # P(SxSxA)  = transition matrix 
        #     P could be an array with 3 dimensions or a cell array (1xA),
        #     each cell containing a matrix (SxS) possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
        #     R could be an array with 3 dimensions (SxSxA) or 
        #     a cell array (1xA), each cell containing a sparse matrix (SxS) or
        #     a 2D array(SxA) possibly sparse  
        # policy(S) = a policy
        #
        # Evaluation
        # ----------
        # Ppolicy(SxS)  = transition matrix for policy
        # PRpolicy(S)   = reward matrix for policy
        #
Steven Cordwell's avatar
Steven Cordwell committed
602
603
        Ppolicy = empty((self.S, self.S))
        Rpolicy = zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
604
        for aa in range(self.A): # avoid looping over S
Steven Cordwell's avatar
Steven Cordwell committed
605
606
            # the rows that use action a.
            ind = (self.policy == aa).nonzero()[0]
607
608
            # if no rows use action a, then no need to assign this
            if ind.size > 0:
609
610
611
612
                try:
                    Ppolicy[ind, :] = self.P[aa][ind, :]
                except ValueError:
                    Ppolicy[ind, :] = self.P[aa][ind, :].todense()
613
                #PR = self._computePR() # an apparently uneeded line, and
Steven Cordwell's avatar
Steven Cordwell committed
614
615
                # perhaps harmful in this implementation c.f.
                # mdp_computePpolicyPRpolicy.m
616
                Rpolicy[ind] = self.R[aa][ind]
Steven Cordwell's avatar
Steven Cordwell committed
617
618
619
620
621
622
623
624
625
626
        # self.R cannot be sparse with the code in its current condition, but
        # it should be possible in the future. Also, if R is so big that its
        # a good idea to use a sparse matrix for it, then converting PRpolicy
        # from a dense to sparse matrix doesn't seem very memory efficient
        if type(self.R) is sparse:
            Rpolicy = sparse(Rpolicy)
        #self.Ppolicy = Ppolicy
        #self.Rpolicy = Rpolicy
        return (Ppolicy, Rpolicy)
    
627
    def _evalPolicyIterative(self, V0=0, epsilon=0.0001, max_iter=10000):
Steven Cordwell's avatar
Steven Cordwell committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        # Evaluate a policy using iteration.
        #
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
        # P(SxSxA)  = transition matrix 
        #    P could be an array with 3 dimensions or 
        #    a cell array (1xS), each cell containing a matrix possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
        #    R could be an array with 3 dimensions (SxSxA) or 
        #    a cell array (1xA), each cell containing a sparse matrix (SxS) or
        #    a 2D array(SxA) possibly sparse  
        # discount  = discount rate in ]0; 1[
        # policy(S) = a policy
        # V0(S)     = starting value function, optional (default : zeros(S,1))
        # epsilon   = epsilon-optimal policy search, upper than 0,
        #    optional (default : 0.0001)
        # max_iter  = maximum number of iteration to be done, upper than 0, 
        #    optional (default : 10000)
        #    
        # Evaluation
        # ----------
        # Vpolicy(S) = value function, associated to a specific policy
        #
        # Notes
        # -----
        # In verbose mode, at each iteration, displays the condition which
        # stopped iterations: epsilon-optimum value function found or maximum
        # number of iterations reached.
        #
658
        if (type(V0) in (int, float)) and (V0 == 0):
Steven Cordwell's avatar
Steven Cordwell committed
659
            policy_V = zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
660
        else:
Steven Cordwell's avatar
Steven Cordwell committed
661
            if (type(V0) in (ndarray)) and (V0.shape == (self.S, 1)):
662
663
                policy_V = V0
            else:
664
665
666
                raise ValueError("PyMDPtoolbox: V0 vector/array type not "
                                 "supported. Use ndarray of matrix column "
                                 "vector length S.")
Steven Cordwell's avatar
Steven Cordwell committed
667
        
668
        policy_P, policy_R = self._computePpolicyPRpolicy()
Steven Cordwell's avatar
Steven Cordwell committed
669
670
671
        
        if self.verbose:
            print('  Iteration    V_variation')
672
        
Steven Cordwell's avatar
Steven Cordwell committed
673
674
675
        itr = 0
        done = False
        while not done:
676
            itr += 1
677
678
            
            Vprev = policy_V
679
            policy_V = policy_R + self.discount * policy_P.dot(Vprev)
680
681
            
            variation = absolute(policy_V - Vprev).max()
Steven Cordwell's avatar
Steven Cordwell committed
682
683
            if self.verbose:
                print('      %s         %s') % (itr, variation)
684
685
686
            
            # ensure |Vn - Vpolicy| < epsilon
            if variation < ((1 - self.discount) / self.discount) * epsilon:
Steven Cordwell's avatar
Steven Cordwell committed
687
688
                done = True
                if self.verbose:
689
690
                    print("PyMDPtoolbox: iterations stopped, epsilon-optimal "
                          "value function.")
Steven Cordwell's avatar
Steven Cordwell committed
691
692
693
            elif itr == max_iter:
                done = True
                if self.verbose:
694
695
                    print("PyMDPtoolbox: iterations stopped by maximum number "
                          "of iteration condition.")
Steven Cordwell's avatar
Steven Cordwell committed
696
        
Steven Cordwell's avatar
Steven Cordwell committed
697
        self.V = policy_V
698
    
699
    def _evalPolicyMatrix(self):
Steven Cordwell's avatar
Steven Cordwell committed
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
        # Evaluate the value function of the policy using linear equations.
        #
        # Arguments 
        # ---------
        # Let S = number of states, A = number of actions
        # P(SxSxA) = transition matrix 
        #      P could be an array with 3 dimensions or a cell array (1xA),
        #      each cell containing a matrix (SxS) possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
        #      R could be an array with 3 dimensions (SxSxA) or 
        #      a cell array (1xA), each cell containing a sparse matrix (SxS) or
        #      a 2D array(SxA) possibly sparse  
        # discount = discount rate in ]0; 1[
        # policy(S) = a policy
        #
        # Evaluation
        # ----------
        # Vpolicy(S) = value function of the policy
        #
719
        Ppolicy, Rpolicy = self._computePpolicyPRpolicy()
Steven Cordwell's avatar
Steven Cordwell committed
720
        # V = PR + gPV  => (I-gP)V = PR  => V = inv(I-gP)* PR
721
722
        self.V = self._lin_eq(
            (self._speye(self.S, self.S) - self.discount * Ppolicy), Rpolicy)
Steven Cordwell's avatar
Steven Cordwell committed
723
    
724
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
725
726
        # Run the policy iteration algorithm.
        # If verbose the print a header
727
728
        if self.verbose:
            print('  Iteration  Number_of_different_actions')
Steven Cordwell's avatar
Steven Cordwell committed
729
        # Set up the while stopping condition and the current time
Steven Cordwell's avatar
Steven Cordwell committed
730
        done = False
731
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
732
        # loop until a stopping condition is reached
Steven Cordwell's avatar
Steven Cordwell committed
733
        while not done:
734
            self.iter += 1
735
            # these _evalPolicy* functions will update the classes value
Steven Cordwell's avatar
Steven Cordwell committed
736
            # attribute
Steven Cordwell's avatar
Steven Cordwell committed
737
            if self.eval_type == "matrix":
738
                self._evalPolicyMatrix()
Steven Cordwell's avatar
Steven Cordwell committed
739
            elif self.eval_type == "iterative":
740
                self._evalPolicyIterative()
Steven Cordwell's avatar
Steven Cordwell committed
741
742
            # This should update the classes policy attribute but leave the
            # value alone
743
            policy_next, null = self._bellmanOperator()
744
            del null
Steven Cordwell's avatar
Steven Cordwell committed
745
746
            # calculate in how many places does the old policy disagree with
            # the new policy
747
            n_different = (policy_next != self.policy).sum()
Steven Cordwell's avatar
Steven Cordwell committed
748
            # if verbose then continue printing a table
749
            if self.verbose:
750
751
                print('       %s                 %s') % (self.iter,
                                                         n_different)
Steven Cordwell's avatar
Steven Cordwell committed
752
753
            # Once the policy is unchanging of the maximum number of 
            # of iterations has been reached then stop
754
            if n_different == 0:
Steven Cordwell's avatar
Steven Cordwell committed
755
                done = True
756
                if self.verbose:
757
758
                    print("PyMDPtoolbox: iterations stopped, unchanging "
                          "policy found.")
759
760
761
            elif (self.iter == self.max_iter):
                done = True 
                if self.verbose:
762
763
                    print("PyMDPtoolbox: iterations stopped by maximum number "
                          "of iteration condition.")
764
765
            else:
                self.policy = policy_next
Steven Cordwell's avatar
Steven Cordwell committed
766
        # update the time to return th computation time
767
        self.time = time() - self.time
Steven Cordwell's avatar
Steven Cordwell committed
768
        # store value and policy as tuples
769
770
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
771

772
class PolicyIterationModified(PolicyIteration):
773
    
774
    """A discounted MDP  solved using a modifified policy iteration algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
775
776
777
778
779
    
    Arguments
    ---------
    Let S = number of states, A = number of actions
    P(SxSxA) = transition matrix 
780
781
             P could be an array with 3 dimensions or a cell array (1xA),
             each cell containing a matrix (SxS) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
    R(SxSxA) or (SxA) = reward matrix
             R could be an array with 3 dimensions (SxSxA) or 
             a cell array (1xA), each cell containing a sparse matrix (SxS) or
             a 2D array(SxA) possibly sparse  
    discount = discount rate, in ]0, 1[
    policy0(S) = starting policy, optional 
    max_iter = maximum number of iteration to be done, upper than 0, 
             optional (default 1000)
    eval_type = type of function used to evaluate policy: 
             0 for mdp_eval_policy_matrix, else mdp_eval_policy_iterative
             optional (default 0)
    
    Data Attributes
    ---------------
    V(S)   = value function 
    policy(S) = optimal policy
    iter     = number of done iterations
    cpu_time = used CPU time
    
    Notes
    -----
    In verbose mode, at each iteration, displays the number 
    of differents actions between policy n-1 and n
    
    Examples
    --------
808
809
810
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.forest()
    >>> pim = mdptoolbox.mdp.PolicyIterationModified(P, R, 0.9)
811
    >>> pim.run()
812
813
814
815
    >>> pim.policy
    FIXME
    >>> pim.V
    FIXME
816
    
Steven Cordwell's avatar
Steven Cordwell committed
817
    """
818
    
819
820
    def __init__(self, transitions, reward, discount, epsilon=0.01,
                 max_iter=10):
821
        # Initialise a (modified) policy iteration MDP.
Steven Cordwell's avatar
Steven Cordwell committed
822
        
823
824
825
        # Maybe its better not to subclass from PolicyIteration, because the
        # initialisation of the two are quite different. eg there is policy0
        # being calculated here which doesn't need to be. The only thing that
826
        # is needed from the PolicyIteration class is the _evalPolicyIterative
827
        # function. Perhaps there is a better way to do it?
828
829
        PolicyIteration.__init__(self, transitions, reward, discount, None,
                                 max_iter, 1)
830
        
831
832
833
834
        # PolicyIteration doesn't pass epsilon to MDP.__init__() so we will
        # check it here
        if type(epsilon) in (int, float):
            if epsilon <= 0:
835
836
                raise ValueError("PyMDPtoolbox: epsilon must be greater than "
                                 "0.")
837
        else:
838
839
            raise ValueError("PyMDPtoolbox: epsilon must be a positive real "
                             "number greater than zero.")
840
        
841
842
        # computation of threshold of variation for V for an epsilon-optimal
        # policy
843
844
845
846
847
        if self.discount != 1:
            self.thresh = epsilon * (1 - self.discount) / self.discount
        else:
            self.thresh = epsilon
        
848
849
        self.epsilon = epsilon
        
850
        if discount == 1:
Steven Cordwell's avatar
Steven Cordwell committed
851
            self.V = zeros((self.S, 1))
852
853
        else:
            # min(min()) is not right
854
            self.V = 1 / (1 - discount) * self.R.min() * ones((self.S, 1))
855
856
        
        # Call the iteration method
857
        #self.run()
Steven Cordwell's avatar
Steven Cordwell committed
858
    
859
    def run(self):
860
        # Run the modified policy iteration algorithm.
861
862
        
        if self.verbose:
863
            print('\tIteration\tV-variation')
864
        
Steven Cordwell's avatar
Steven Cordwell committed
865
        self.time = time()
Steven Cordwell's avatar
Steven Cordwell committed
866
        
867
868
        done = False
        while not done:
869
            self.iter += 1
870
            
871
            self.policy, Vnext = self._bellmanOperator()
872
            #[Ppolicy, PRpolicy] = mdp_computePpolicyPRpolicy(P, PR, policy);
873
            
874
            variation = getSpan(Vnext - self.V)
875
            if self.verbose:
876
                print("\t%s\t%s" % (self.iter, variation))
877
            
Steven Cordwell's avatar
Steven Cordwell committed
878
            self.V = Vnext
Steven Cordwell's avatar
Steven Cordwell committed
879
            if variation < self.thresh:
880
881
882
883
                done = True
            else:
                is_verbose = False
                if self.verbose:
884
                    self.setSilent()
885
886
                    is_verbose = True
                
887
                self._evalPolicyIterative(self.V, self.epsilon, self.max_iter)
888
889
                
                if is_verbose:
890
                    self.setVerbose()
891
        
892
        self.time = time() - self.time
893
894
        
        # store value and policy as tuples
895
896
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
897
898

class QLearning(MDP):
899
    
900
    """A discounted MDP solved using the Q learning algorithm.
Steven Cordwell's avatar
Steven Cordwell committed
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
    
    Let S = number of states, A = number of actions
    
    Parameters
    ----------
    P : transition matrix (SxSxA)
        P could be an array with 3 dimensions or a cell array (1xA), each
        cell containing a sparse matrix (SxS)
    R : reward matrix(SxSxA) or (SxA)
        R could be an array with 3 dimensions (SxSxA) or a cell array
        (1xA), each cell containing a sparse matrix (SxS) or a 2D
        array(SxA) possibly sparse
    discount : discount rate
        in ]0; 1[    
    n_iter : number of iterations to execute (optional).
916
917
        Default value = 10000; it is an integer greater than the default
        value.
Steven Cordwell's avatar
Steven Cordwell committed
918
919
920
921
922
    
    Results
    -------
    Q : learned Q matrix (SxA) 
    
Steven Cordwell's avatar
Steven Cordwell committed
923
    V : learned value function (S).
Steven Cordwell's avatar
Steven Cordwell committed
924
925
926
927
928
929
930
    
    policy : learned optimal policy (S).
    
    mean_discrepancy : vector of V discrepancy mean over 100 iterations
        Then the length of this vector for the default value of N is 100 
        (N/100).

931
    Examples
Steven Cordwell's avatar
Steven Cordwell committed
932
    ---------
933
934
935
    >>> # These examples are reproducible only if random seed is set to 0 in
    >>> # both the random and numpy.random modules.
    >>> import numpy as np
936
    >>> import mdptoolbox, mdptoolbox.example
937
    >>> np.random.seed(0)
938
939
    >>> P, R = mdptoolbox.example.forest()
    >>> ql = mdptoolbox.mdp.QLearning(P, R, 0.96)
940
    >>> ql.run()
Steven Cordwell's avatar
Steven Cordwell committed
941
    >>> ql.Q
942
943
944
    array([[ 68.38037354,  43.24888454],
           [ 72.37777922,  42.75549145],
           [ 77.02892702,  64.68712932]])
Steven Cordwell's avatar
Steven Cordwell committed
945
    >>> ql.V
946
    (68.38037354422798, 72.37777921607258, 77.02892701616531)
Steven Cordwell's avatar
Steven Cordwell committed
947
    >>> ql.policy
948
    (0, 0, 0)
Steven Cordwell's avatar
Steven Cordwell committed
949
    
950
    >>> import mdptoolbox
Steven Cordwell's avatar
Steven Cordwell committed
951
952
953
    >>> import numpy as np
    >>> P = np.array([[[0.5, 0.5],[0.8, 0.2]],[[0, 1],[0.1, 0.9]]])
    >>> R = np.array([[5, 10], [-1, 2]])
954
    >>> np.random.seed(0)
955
956
    >>> ql = mdptoolbox.mdp.QLearning(P, R, 0.9)
    >>> ql.run()
Steven Cordwell's avatar
Steven Cordwell committed
957
    >>> ql.Q
958
959
    array([[ 39.933691  ,  43.17543338],
           [ 36.94394224,  35.42568056]])
Steven Cordwell's avatar
Steven Cordwell committed
960
    >>> ql.V
961
    (43.17543338090149, 36.943942243204454)
Steven Cordwell's avatar
Steven Cordwell committed
962
    >>> ql.policy
963
    (1, 0)
964
    
Steven Cordwell's avatar
Steven Cordwell committed
965
966
967
    """
    
    def __init__(self, transitions, reward, discount, n_iter=10000):
968
        # Initialise a Q-learning MDP.
Steven Cordwell's avatar
Steven Cordwell committed
969
        
970
971
        # The following check won't be done in MDP()'s initialisation, so let's
        # do it here
972
973
974
        self.max_iter = int(n_iter)
        assert self.max_iter >= 10000, "PyMDPtoolbox: n_iter should be " \
                                        "greater than 10000."
Steven Cordwell's avatar
Steven Cordwell committed
975
        
976
        # We don't want to send this to MDP because _computePR should not be
977
        # run on it, so check that it defines an MDP
978
979
        check(transitions, reward)
        
980
981
        # Store P, S, and A
        self._computeP(transitions)
982
983
984
985
986
        
        self.R = reward
        
        self.discount = discount
        
Steven Cordwell's avatar