mdp.py 55.3 KB
Newer Older
Steven Cordwell's avatar
Steven Cordwell committed
1
# -*- coding: utf-8 -*-
2
3
"""Markov Decision Process (MDP) Toolbox: ``mdp`` module
=====================================================
4

5
6
The ``mdp`` module provides classes for the resolution of descrete-time Markov
Decision Processes.
Steven Cordwell's avatar
Steven Cordwell committed
7

Steven Cordwell's avatar
Steven Cordwell committed
8
9
10
11
12
Available classes
-----------------
MDP
    Base Markov decision process class
FiniteHorizon
Steven Cordwell's avatar
Steven Cordwell committed
13
    Backwards induction finite horizon MDP
Steven Cordwell's avatar
Steven Cordwell committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
LP
    Linear programming MDP
PolicyIteration
    Policy iteration MDP
PolicyIterationModified
    Modified policy iteration MDP
QLearning
    Q-learning MDP
RelativeValueIteration
    Relative value iteration MDP
ValueIteration
    Value iteration MDP
ValueIterationGS
    Gauss-Seidel value iteration MDP
Steven Cordwell's avatar
Steven Cordwell committed
28
29
30

"""

31
32
# Copyright (c) 2011-2013 Steven A. W. Cordwell
# Copyright (c) 2009 INRA
33
#
Steven Cordwell's avatar
Steven Cordwell committed
34
# All rights reserved.
35
#
Steven Cordwell's avatar
Steven Cordwell committed
36
37
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
38
#
Steven Cordwell's avatar
Steven Cordwell committed
39
40
41
42
43
44
45
46
#   * Redistributions of source code must retain the above copyright notice,
#     this list of conditions and the following disclaimer.
#   * Redistributions in binary form must reproduce the above copyright notice,
#     this list of conditions and the following disclaimer in the documentation
#     and/or other materials provided with the distribution.
#   * Neither the name of the <ORGANIZATION> nor the names of its contributors
#     may be used to endorse or promote products derived from this software
#     without specific prior written permission.
47
#
Steven Cordwell's avatar
Steven Cordwell committed
48
49
50
51
52
53
54
55
56
57
58
59
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.

60
61
import math as _math
import time as _time
Steven Cordwell's avatar
Steven Cordwell committed
62

63
64
import numpy as _np
import scipy.sparse as _sp
Steven Cordwell's avatar
Steven Cordwell committed
65

66
67
68
69
70
try:
    from .util import check, getSpan
except ValueError:
    # importing mdp as a module rather than as part of a package
    from util import check, getSpan
71

72
_MSG_STOP_MAX_ITER = "Iterating stopped due to maximum number of iterations " \
Steven Cordwell's avatar
Steven Cordwell committed
73
    "condition."
74
_MSG_STOP_EPSILON_OPTIMAL_POLICY = "Iterating stopped, epsilon-optimal " \
Steven Cordwell's avatar
Steven Cordwell committed
75
    "policy found."
76
_MSG_STOP_EPSILON_OPTIMAL_VALUE = "Iterating stopped, epsilon-optimal value " \
Steven Cordwell's avatar
Steven Cordwell committed
77
    "function found."
78
_MSG_STOP_UNCHANGING_POLICY = "Iterating stopped, unchanging policy found."
Steven Cordwell's avatar
Steven Cordwell committed
79

Steven Cordwell's avatar
Steven Cordwell committed
80
class MDP(object):
81

Steven Cordwell's avatar
Steven Cordwell committed
82
    """A Markov Decision Problem.
83

Steven Cordwell's avatar
Steven Cordwell committed
84
    Let ``S`` = the number of states, and ``A`` = the number of acions.
85

Steven Cordwell's avatar
Steven Cordwell committed
86
87
88
    Parameters
    ----------
    transitions : array
89
        Transition probability matrices. These can be defined in a variety of
Steven Cordwell's avatar
Steven Cordwell committed
90
        ways. The simplest is a numpy array that has the shape ``(A, S, S)``,
91
        though there are other possibilities. It can be a tuple or list or
Steven Cordwell's avatar
Steven Cordwell committed
92
93
94
95
96
97
98
        numpy object array of length ``A``, where each element contains a numpy
        array or matrix that has the shape ``(S, S)``. This "list of matrices"
        form is useful when the transition matrices are sparse as
        ``scipy.sparse.csr_matrix`` matrices can be used. In summary, each
        action's transition matrix must be indexable like ``transitions[a]``
        where ``a`` ∈ {0, 1...A-1}, and ``transitions[a]`` returns an ``S`` ×
        ``S`` array-like object.
Steven Cordwell's avatar
Steven Cordwell committed
99
    reward : array
100
101
        Reward matrices or vectors. Like the transition matrices, these can
        also be defined in a variety of ways. Again the simplest is a numpy
Steven Cordwell's avatar
Steven Cordwell committed
102
103
104
105
106
107
108
109
        array that has the shape ``(S, A)``, ``(S,)`` or ``(A, S, S)``. A list
        of lists can be used, where each inner list has length ``S`` and the
        outer list has length ``A``. A list of numpy arrays is possible where
        each inner array can be of the shape ``(S,)``, ``(S, 1)``, ``(1, S)``
        or ``(S, S)``. Also ``scipy.sparse.csr_matrix`` can be used instead of
        numpy arrays. In addition, the outer list can be replaced by any object
        that can be indexed like ``reward[a]`` such as a tuple or numpy object
        array of length ``A``.
110
111
112
113
    discount : float
        Discount factor. The per time-step discount factor on future rewards.
        Valid values are greater than 0 upto and including 1. If the discount
        factor is 1, then convergence is cannot be assumed and a warning will
Steven Cordwell's avatar
Steven Cordwell committed
114
115
        be displayed. Subclasses of ``MDP`` may pass ``None`` in the case where
        the algorithm does not use a discount factor.
116
117
118
119
    epsilon : float
        Stopping criterion. The maximum change in the value function at each
        iteration is compared against ``epsilon``. Once the change falls below
        this value, then the value function is considered to have converged to
Steven Cordwell's avatar
Steven Cordwell committed
120
121
122
        the optimal value function. Subclasses of ``MDP`` may pass ``None`` in
        the case where the algorithm does not use an epsilon-optimal stopping
        criterion.
123
124
125
    max_iter : int
        Maximum number of iterations. The algorithm will be terminated once
        this many iterations have elapsed. This must be greater than 0 if
Steven Cordwell's avatar
Steven Cordwell committed
126
127
        specified. Subclasses of ``MDP`` may pass ``None`` in the case where
        the algorithm does not use a maximum number of iterations.
128

Steven Cordwell's avatar
Steven Cordwell committed
129
130
131
    Attributes
    ----------
    P : array
132
        Transition probability matrices.
Steven Cordwell's avatar
Steven Cordwell committed
133
    R : array
134
135
        Reward vectors.
    V : tuple
Steven Cordwell's avatar
Steven Cordwell committed
136
137
138
        The optimal value function. Each element is a float corresponding to
        the expected value of being in that state assuming the optimal policy
        is followed.
Steven Cordwell's avatar
Steven Cordwell committed
139
    discount : float
140
        The discount rate on future rewards.
Steven Cordwell's avatar
Steven Cordwell committed
141
    max_iter : int
142
143
144
        The maximum number of iterations.
    policy : tuple
        The optimal policy.
Steven Cordwell's avatar
Steven Cordwell committed
145
    time : float
146
147
        The time used to converge to the optimal policy.
    verbose : boolean
Steven Cordwell's avatar
Steven Cordwell committed
148
        Whether verbose output should be displayed or not.
149

Steven Cordwell's avatar
Steven Cordwell committed
150
151
    Methods
    -------
152
    run
Steven Cordwell's avatar
Steven Cordwell committed
153
        Implemented in child classes as the main algorithm loop. Raises an
154
        exception if it has not been overridden.
Steven Cordwell's avatar
Steven Cordwell committed
155
156
157
158
    setSilent
        Turn the verbosity off
    setVerbose
        Turn the verbosity on
159

Steven Cordwell's avatar
Steven Cordwell committed
160
    """
161

162
    def __init__(self, transitions, reward, discount, epsilon, max_iter):
163
        # Initialise a MDP based on the input parameters.
164

Steven Cordwell's avatar
Steven Cordwell committed
165
166
        # if the discount is None then the algorithm is assumed to not use it
        # in its computations
167
168
169
170
        if discount is not None:
            self.discount = float(discount)
            assert 0.0 < self.discount <= 1.0, "Discount rate must be in ]0; 1]"
            if self.discount == 1:
Steven Cordwell's avatar
Steven Cordwell committed
171
                print("WARNING: check conditions of convergence. With no "
Steven Cordwell's avatar
Steven Cordwell committed
172
                      "discount, convergence can not be assumed.")
Steven Cordwell's avatar
Steven Cordwell committed
173
174
        # if the max_iter is None then the algorithm is assumed to not use it
        # in its computations
175
176
177
178
        if max_iter is not None:
            self.max_iter = int(max_iter)
            assert self.max_iter > 0, "The maximum number of iterations " \
                                      "must be greater than 0."
Steven Cordwell's avatar
Steven Cordwell committed
179
        # check that epsilon is something sane
180
181
182
        if epsilon is not None:
            self.epsilon = float(epsilon)
            assert self.epsilon > 0, "Epsilon must be greater than 0."
Steven Cordwell's avatar
Steven Cordwell committed
183
184
185
186
        # we run a check on P and R to make sure they are describing an MDP. If
        # an exception isn't raised then they are assumed to be correct.
        check(transitions, reward)
        # computePR will assign the variables self.S, self.A, self.P and self.R
187
        self._computePR(transitions, reward)
Steven Cordwell's avatar
Steven Cordwell committed
188
189
190
191
        # the verbosity is by default turned off
        self.verbose = False
        # Initially the time taken to perform the computations is set to None
        self.time = None
192
193
        # set the initial iteration count to zero
        self.iter = 0
Steven Cordwell's avatar
Steven Cordwell committed
194
        # V should be stored as a vector ie shape of (S,) or (1, S)
Steven Cordwell's avatar
Steven Cordwell committed
195
        self.V = None
Steven Cordwell's avatar
Steven Cordwell committed
196
        # policy can also be stored as a vector
Steven Cordwell's avatar
Steven Cordwell committed
197
        self.policy = None
198

199
200
201
202
203
204
    def __repr__(self):
        P_repr = "P: \n"
        R_repr = "R: \n"
        for aa in range(self.A):
            P_repr += repr(self.P[aa]) + "\n"
            R_repr += repr(self.R[aa]) + "\n"
205
        return(P_repr + "\n" + R_repr)
206

207
    def _bellmanOperator(self, V=None):
Steven Cordwell's avatar
Steven Cordwell committed
208
        # Apply the Bellman operator on the value function.
209
        #
Steven Cordwell's avatar
Steven Cordwell committed
210
        # Updates the value function and the Vprev-improving policy.
211
        #
Steven Cordwell's avatar
Steven Cordwell committed
212
213
214
215
        # Returns: (policy, value), tuple of new policy and its value
        #
        # If V hasn't been sent into the method, then we assume to be working
        # on the objects V attribute
216
217
        if V is None:
            # this V should be a reference to the data rather than a copy
218
219
            V = self.V
        else:
Steven Cordwell's avatar
Steven Cordwell committed
220
            # make sure the user supplied V is of the right shape
221
            try:
222
223
                assert V.shape in ((self.S,), (1, self.S)), "V is not the " \
                    "right shape (Bellman operator)."
224
            except AttributeError:
225
                raise TypeError("V must be a numpy array or matrix.")
226
227
228
229
        # Looping through each action the the Q-value matrix is calculated.
        # P and V can be any object that supports indexing, so it is important
        # that you know they define a valid MDP before calling the
        # _bellmanOperator method. Otherwise the results will be meaningless.
230
        Q = _np.empty((self.A, self.S))
Steven Cordwell's avatar
Steven Cordwell committed
231
        for aa in range(self.A):
Steven Cordwell's avatar
Steven Cordwell committed
232
            Q[aa] = self.R[aa] + self.discount * self.P[aa].dot(V)
Steven Cordwell's avatar
Steven Cordwell committed
233
        # Get the policy and value, for now it is being returned but...
234
        # Which way is better?
235
        # 1. Return, (policy, value)
236
        return (Q.argmax(axis=0), Q.max(axis=0))
Steven Cordwell's avatar
Steven Cordwell committed
237
238
        # 2. update self.policy and self.V directly
        # self.V = Q.max(axis=1)
239
        # self.policy = Q.argmax(axis=1)
240

241
242
243
244
245
246
247
248
249
250
251
252
    def _computeP(self, P):
        # Set self.P as a tuple of length A, with each element storing an S×S
        # matrix.
        self.A = len(P)
        try:
            if P.ndim == 3:
                self.S = P.shape[1]
            else:
               self.S = P[0].shape[0]
        except AttributeError:
            self.S = P[0].shape[0]
        # convert P to a tuple of numpy arrays
253
        self.P = tuple(P[aa] for aa in range(self.A))
254

255
    def _computePR(self, P, R):
Steven Cordwell's avatar
Steven Cordwell committed
256
257
258
259
        # Compute the reward for the system in one state chosing an action.
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
260
261
        #    P(SxSxA)  = transition matrix
        #        P could be an array with 3 dimensions or  a cell array (1xA),
Steven Cordwell's avatar
Steven Cordwell committed
262
263
        #        each cell containing a matrix (SxS) possibly sparse
        #    R(SxSxA) or (SxA) = reward matrix
264
265
266
        #        R could be an array with 3 dimensions (SxSxA) or  a cell array
        #        (1xA), each cell containing a sparse matrix (SxS) or a 2D
        #        array(SxA) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
267
268
269
270
        # Evaluation
        # ----------
        #    PR(SxA)   = reward matrix
        #
271
        # We assume that P and R define a MDP i,e. assumption is that
Steven Cordwell's avatar
Steven Cordwell committed
272
        # check(P, R) has already been run and doesn't fail.
273
        #
274
275
        # First compute store P, S, and A
        self._computeP(P)
Steven Cordwell's avatar
Steven Cordwell committed
276
277
        # Set self.R as a tuple of length A, with each element storing an 1×S
        # vector.
278
        try:
279
            if R.ndim == 1:
280
                r = _np.array(R).reshape(self.S)
281
                self.R = tuple(r for aa in range(self.A))
282
            elif R.ndim == 2:
283
                self.R = tuple(_np.array(R[:, aa]).reshape(self.S)
284
                                for aa in range(self.A))
Steven Cordwell's avatar
Steven Cordwell committed
285
            else:
286
                self.R = tuple(_np.multiply(P[aa], R[aa]).sum(1).reshape(self.S)
287
                                for aa in range(self.A))
288
        except AttributeError:
289
            if len(R) == self.A:
290
                self.R = tuple(_np.multiply(P[aa], R[aa]).sum(1).reshape(self.S)
291
                                for aa in range(self.A))
292
            else:
293
                r = _np.array(R).reshape(self.S)
294
                self.R = tuple(r for aa in range(self.A))
295

296
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
297
        # Raise error because child classes should implement this function.
298
        raise NotImplementedError("You should create a run() method.")
299

Steven Cordwell's avatar
Steven Cordwell committed
300
    def setSilent(self):
301
        """Set the MDP algorithm to silent mode."""
Steven Cordwell's avatar
Steven Cordwell committed
302
        self.verbose = False
303

Steven Cordwell's avatar
Steven Cordwell committed
304
    def setVerbose(self):
305
        """Set the MDP algorithm to verbose mode."""
Steven Cordwell's avatar
Steven Cordwell committed
306
        self.verbose = True
Steven Cordwell's avatar
Steven Cordwell committed
307
308

class FiniteHorizon(MDP):
309

Steven Cordwell's avatar
Steven Cordwell committed
310
    """A MDP solved using the finite-horizon backwards induction algorithm.
311

Steven Cordwell's avatar
Steven Cordwell committed
312
313
    Parameters
    ----------
314
315
316
317
318
319
320
321
322
    transitions : array
        Transition probability matrices. See the documentation for the ``MDP``
        class for details.
    reward : array
        Reward matrices or vectors. See the documentation for the ``MDP`` class
        for details.
    discount : float
        Discount factor. See the documentation for the ``MDP`` class for
        details.
Steven Cordwell's avatar
Steven Cordwell committed
323
324
325
326
    N : int
        Number of periods. Must be greater than 0.
    h : array, optional
        Terminal reward. Default: a vector of zeros.
327

Steven Cordwell's avatar
Steven Cordwell committed
328
329
    Data Attributes
    ---------------
330
    V : array
Steven Cordwell's avatar
Steven Cordwell committed
331
        Optimal value function. Shape = (S, N+1). ``V[:, n]`` = optimal value
Steven Cordwell's avatar
Steven Cordwell committed
332
        function at stage ``n`` with stage in {0, 1...N-1}. ``V[:, N]`` value
333
        function for terminal stage.
Steven Cordwell's avatar
Steven Cordwell committed
334
335
    policy : array
        Optimal policy. ``policy[:, n]`` = optimal policy at stage ``n`` with
Steven Cordwell's avatar
Steven Cordwell committed
336
        stage in {0, 1...N}. ``policy[:, N]`` = policy for stage ``N``.
Steven Cordwell's avatar
Steven Cordwell committed
337
338
    time : float
        used CPU time
339

Steven Cordwell's avatar
Steven Cordwell committed
340
341
342
    Notes
    -----
    In verbose mode, displays the current stage and policy transpose.
343

Steven Cordwell's avatar
Steven Cordwell committed
344
345
    Examples
    --------
346
347
348
    >>> import mdptoolbox, mdptoolbox.example
    >>> P, R = mdptoolbox.example.forest()
    >>> fh = mdptoolbox.mdp.FiniteHorizon(P, R, 0.9, 3)
349
    >>> fh.run()
Steven Cordwell's avatar
Steven Cordwell committed
350
351
352
353
354
355
356
357
    >>> fh.V
    array([[ 2.6973,  0.81  ,  0.    ,  0.    ],
           [ 5.9373,  3.24  ,  1.    ,  0.    ],
           [ 9.9373,  7.24  ,  4.    ,  0.    ]])
    >>> fh.policy
    array([[0, 0, 0],
           [0, 0, 1],
           [0, 0, 0]])
358

Steven Cordwell's avatar
Steven Cordwell committed
359
    """
Steven Cordwell's avatar
Steven Cordwell committed
360

Steven Cordwell's avatar
Steven Cordwell committed
361
    def __init__(self, transitions, reward, discount, N, h=None):
362
        # Initialise a finite horizon MDP.
363
        self.N = int(N)
Steven Cordwell's avatar
Steven Cordwell committed
364
        assert self.N > 0, "N must be greater than 0."
Steven Cordwell's avatar
Steven Cordwell committed
365
        # Initialise the base class
366
        MDP.__init__(self, transitions, reward, discount, None, None)
Steven Cordwell's avatar
Steven Cordwell committed
367
368
        # remove the iteration counter, it is not meaningful for backwards
        # induction
369
        del self.iter
Steven Cordwell's avatar
Steven Cordwell committed
370
        # There are value vectors for each time step up to the horizon
371
        self.V = _np.zeros((self.S, N + 1))
Steven Cordwell's avatar
Steven Cordwell committed
372
373
        # There are policy vectors for each time step before the horizon, when
        # we reach the horizon we don't need to make decisions anymore.
374
        self.policy = _np.empty((self.S, N), dtype=int)
Steven Cordwell's avatar
Steven Cordwell committed
375
376
        # Set the reward for the final transition to h, if specified.
        if h is not None:
377
            self.V[:, N] = h
378
        # Call the iteration method
379
        #self.run()
380

381
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
382
        # Run the finite horizon algorithm.
383
        self.time = _time.time()
Steven Cordwell's avatar
Steven Cordwell committed
384
        # loop through each time period
385
        for n in range(self.N):
Steven Cordwell's avatar
Steven Cordwell committed
386
            W, X = self._bellmanOperator(self.V[:, self.N - n])
Steven Cordwell's avatar
Steven Cordwell committed
387
388
389
            stage = self.N - n - 1
            self.V[:, stage] = X
            self.policy[:, stage] = W
Steven Cordwell's avatar
Steven Cordwell committed
390
            if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
391
392
                print(("stage: %s, policy: %s") % (
                    stage, self.policy[:, stage].tolist()))
Steven Cordwell's avatar
Steven Cordwell committed
393
        # update time spent running
394
        self.time = _time.time() - self.time
395
        # After this we could create a tuple of tuples for the values and
Steven Cordwell's avatar
Steven Cordwell committed
396
        # policies.
Steven Cordwell's avatar
Steven Cordwell committed
397
398
399
        #self.V = tuple(tuple(self.V[:, n].tolist()) for n in range(self.N))
        #self.policy = tuple(tuple(self.policy[:, n].tolist())
        #                    for n in range(self.N))
Steven Cordwell's avatar
Steven Cordwell committed
400
401

class LP(MDP):
402

403
    """A discounted MDP soloved using linear programming.
404

Steven Cordwell's avatar
Steven Cordwell committed
405
    This class requires the Python ``cvxopt`` module to be installed.
Steven Cordwell's avatar
Steven Cordwell committed
406
407
408

    Arguments
    ---------
409
410
411
412
413
414
415
416
417
    transitions : array
        Transition probability matrices. See the documentation for the ``MDP``
        class for details.
    reward : array
        Reward matrices or vectors. See the documentation for the ``MDP`` class
        for details.
    discount : float
        Discount factor. See the documentation for the ``MDP`` class for
        details.
Steven Cordwell's avatar
Steven Cordwell committed
418
419
    h : array, optional
        Terminal reward. Default: a vector of zeros.
420

Steven Cordwell's avatar
Steven Cordwell committed
421
422
423
424
425
426
427
428
    Data Attributes
    ---------------
    V : tuple
        optimal values
    policy : tuple
        optimal policy
    time : float
        used CPU time
429

Steven Cordwell's avatar
Steven Cordwell committed
430
431
    Examples
    --------
432
    >>> import mdptoolbox.example
433
434
    >>> P, R = mdptoolbox.example.forest()
    >>> lp = mdptoolbox.mdp.LP(P, R, 0.9)
435
    >>> lp.run()
436
437
438
439
440
441
442
443

    >>> import numpy, mdptoolbox
    >>> P = numpy.array((((0.5, 0.5), (0.8, 0.2)), ((0, 1), (0.1, 0.9))))
    >>> R = numpy.array(((5, 10), (-1, 2)))
    >>> lp = mdptoolbox.mdp.LP(P, R, 0.9)
    >>> lp.run()
    >>> #lp.policy #FIXME: gives (1, 1), should be (1, 0)

Steven Cordwell's avatar
Steven Cordwell committed
444
    """
Steven Cordwell's avatar
Steven Cordwell committed
445

Steven Cordwell's avatar
Steven Cordwell committed
446
    def __init__(self, transitions, reward, discount):
447
        # Initialise a linear programming MDP.
Steven Cordwell's avatar
Steven Cordwell committed
448
        # import some functions from cvxopt and set them as object methods
Steven Cordwell's avatar
Steven Cordwell committed
449
450
        try:
            from cvxopt import matrix, solvers
451
452
            self._linprog = solvers.lp
            self._cvxmat = matrix
Steven Cordwell's avatar
Steven Cordwell committed
453
        except ImportError:
454
455
            raise ImportError("The python module cvxopt is required to use "
                              "linear programming functionality.")
Steven Cordwell's avatar
Steven Cordwell committed
456
        # initialise the MDP. epsilon and max_iter are not needed
457
        MDP.__init__(self, transitions, reward, discount, None, None)
Steven Cordwell's avatar
Steven Cordwell committed
458
        # Set the cvxopt solver to be quiet by default, but ...
459
        # this doesn't do what I want it to do c.f. issue #3
460
461
        if not self.verbose:
            solvers.options['show_progress'] = False
462
        # Call the iteration method
463
        #self.run()
464

465
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
466
        #Run the linear programming algorithm.
467
        self.time = _time.time()
Steven Cordwell's avatar
Steven Cordwell committed
468
        # The objective is to resolve : min V / V >= PR + discount*P*V
469
470
        # The function linprog of the optimisation Toolbox of Mathworks
        # resolves :
Steven Cordwell's avatar
Steven Cordwell committed
471
        # min f'* x / M * x <= b
472
473
474
475
        # So the objective could be expressed as :
        # min V / (discount*P-I) * V <= - PR
        # To avoid loop on states, the matrix M is structured following actions
        # M(A*S,S)
476
        f = self._cvxmat(_np.ones((self.S, 1)))
477
478
        h = _np.array(self.R).reshape(self.S * self.A, 1, order="F")
        h = self._cvxmat(h, tc='d')
479
        M = _np.zeros((self.A * self.S, self.S))
Steven Cordwell's avatar
Steven Cordwell committed
480
481
        for aa in range(self.A):
            pos = (aa + 1) * self.S
482
            M[(pos - self.S):pos, :] = (
483
                self.discount * self.P[aa] - _sp.eye(self.S, self.S))
484
        M = self._cvxmat(M)
485
        # Using the glpk option will make this behave more like Octave
486
        # (Octave uses glpk) and perhaps Matlab. If solver=None (ie using the
487
        # default cvxopt solver) then V agrees with the Octave equivalent
Steven Cordwell's avatar
Steven Cordwell committed
488
        # only to 10e-8 places. This assumes glpk is installed of course.
489
        self.V = _np.array(self._linprog(f, M, -h)['x']).reshape(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
490
        # apply the Bellman operator
491
        self.policy, self.V =  self._bellmanOperator()
Steven Cordwell's avatar
Steven Cordwell committed
492
        # update the time spent solving
493
        self.time = _time.time() - self.time
494
        # store value and policy as tuples
495
496
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
497
498

class PolicyIteration(MDP):
499

500
    """A discounted MDP solved using the policy iteration algorithm.
501

Steven Cordwell's avatar
Steven Cordwell committed
502
503
    Arguments
    ---------
504
505
506
507
508
    transitions : array
        Transition probability matrices. See the documentation for the ``MDP``
        class for details.
    reward : array
        Reward matrices or vectors. See the documentation for the ``MDP`` class
509
        for details.
510
511
512
    discount : float
        Discount factor. See the documentation for the ``MDP`` class for
        details.
Steven Cordwell's avatar
Steven Cordwell committed
513
514
515
    policy0 : array, optional
        Starting policy.
    max_iter : int, optional
516
517
        Maximum number of iterations. See the documentation for the ``MDP``
        class for details. Default is 1000.
Steven Cordwell's avatar
Steven Cordwell committed
518
519
520
521
    eval_type : int or string, optional
        Type of function used to evaluate policy. 0 or "matrix" to solve as a
        set of linear equations. 1 or "iterative" to solve iteratively.
        Default: 0.
522

Steven Cordwell's avatar
Steven Cordwell committed
523
524
525
    Data Attributes
    ---------------
    V : tuple
526
        value function
Steven Cordwell's avatar
Steven Cordwell committed
527
528
529
530
531
532
    policy : tuple
        optimal policy
    iter : int
        number of done iterations
    time : float
        used CPU time
533

Steven Cordwell's avatar
Steven Cordwell committed
534
535
    Notes
    -----
536
    In verbose mode, at each iteration, displays the number
Steven Cordwell's avatar
Steven Cordwell committed
537
    of differents actions between policy n-1 and n
538

Steven Cordwell's avatar
Steven Cordwell committed
539
540
    Examples
    --------
541
    >>> import mdptoolbox, mdptoolbox.example
542
    >>> P, R = mdptoolbox.example.rand(10, 3)
543
    >>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)
544
    >>> pi.run()
545

546
547
    >>> P, R = mdptoolbox.example.forest()
    >>> pi = mdptoolbox.mdp.PolicyIteration(P, R, 0.9)
548
    >>> pi.run()
549
550
551
    >>> expected = (26.244000000000014, 29.484000000000016, 33.484000000000016)
    >>> all(expected[k] - pi.V[k] < 1e-12 for k in range(len(expected)))
    True
Steven Cordwell's avatar
Steven Cordwell committed
552
    >>> pi.policy
553
    (0, 0, 0)
Steven Cordwell's avatar
Steven Cordwell committed
554
    """
555

556
557
    def __init__(self, transitions, reward, discount, policy0=None,
                 max_iter=1000, eval_type=0):
Steven Cordwell's avatar
Steven Cordwell committed
558
559
560
        # Initialise a policy iteration MDP.
        #
        # Set up the MDP, but don't need to worry about epsilon values
561
        MDP.__init__(self, transitions, reward, discount, None, max_iter)
Steven Cordwell's avatar
Steven Cordwell committed
562
        # Check if the user has supplied an initial policy. If not make one.
Steven Cordwell's avatar
Steven Cordwell committed
563
        if policy0 == None:
Steven Cordwell's avatar
Steven Cordwell committed
564
            # Initialise the policy to the one which maximises the expected
Steven Cordwell's avatar
Steven Cordwell committed
565
            # immediate reward
566
            null = _np.zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
567
            self.policy, null = self._bellmanOperator(null)
568
            del null
Steven Cordwell's avatar
Steven Cordwell committed
569
        else:
Steven Cordwell's avatar
Steven Cordwell committed
570
571
            # Use the policy that the user supplied
            # Make sure it is a numpy array
572
            policy0 = _np.array(policy0)
Steven Cordwell's avatar
Steven Cordwell committed
573
            # Make sure the policy is the right size and shape
574
575
            assert policy0.shape in ((self.S, ), (self.S, 1), (1, self.S)), \
                "'policy0' must a vector with length S."
Steven Cordwell's avatar
Steven Cordwell committed
576
            # reshape the policy to be a vector
Steven Cordwell's avatar
Steven Cordwell committed
577
            policy0 = policy0.reshape(self.S)
578
579
            # The policy can only contain integers between 0 and S-1
            msg = "'policy0' must be a vector of integers between 0 and S-1."
580
            assert not _np.mod(policy0, 1).any(), msg
581
582
583
            assert (policy0 >= 0).all(), msg
            assert (policy0 < self.S).all(), msg
            self.policy = policy0
Steven Cordwell's avatar
Steven Cordwell committed
584
        # set the initial values to zero
585
        self.V = _np.zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
586
        # Do some setup depending on the evaluation type
Steven Cordwell's avatar
Steven Cordwell committed
587
588
589
590
591
        if eval_type in (0, "matrix"):
            self.eval_type = "matrix"
        elif eval_type in (1, "iterative"):
            self.eval_type = "iterative"
        else:
Steven Cordwell's avatar
Steven Cordwell committed
592
593
594
            raise ValueError("'eval_type' should be '0' for matrix evaluation "
                             "or '1' for iterative evaluation. The strings "
                             "'matrix' and 'iterative' can also be used.")
595
        # Call the iteration method
596
        #self.run()
597

598
    def _computePpolicyPRpolicy(self):
Steven Cordwell's avatar
Steven Cordwell committed
599
600
601
602
603
        # Compute the transition matrix and the reward matrix for a policy.
        #
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
604
        # P(SxSxA)  = transition matrix
Steven Cordwell's avatar
Steven Cordwell committed
605
606
607
        #     P could be an array with 3 dimensions or a cell array (1xA),
        #     each cell containing a matrix (SxS) possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
608
        #     R could be an array with 3 dimensions (SxSxA) or
Steven Cordwell's avatar
Steven Cordwell committed
609
        #     a cell array (1xA), each cell containing a sparse matrix (SxS) or
610
        #     a 2D array(SxA) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
611
612
613
614
615
616
617
        # policy(S) = a policy
        #
        # Evaluation
        # ----------
        # Ppolicy(SxS)  = transition matrix for policy
        # PRpolicy(S)   = reward matrix for policy
        #
618
619
        Ppolicy = _np.empty((self.S, self.S))
        Rpolicy = _np.zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
620
        for aa in range(self.A): # avoid looping over S
Steven Cordwell's avatar
Steven Cordwell committed
621
622
            # the rows that use action a.
            ind = (self.policy == aa).nonzero()[0]
623
624
            # if no rows use action a, then no need to assign this
            if ind.size > 0:
625
626
627
628
                try:
                    Ppolicy[ind, :] = self.P[aa][ind, :]
                except ValueError:
                    Ppolicy[ind, :] = self.P[aa][ind, :].todense()
629
                #PR = self._computePR() # an apparently uneeded line, and
Steven Cordwell's avatar
Steven Cordwell committed
630
631
                # perhaps harmful in this implementation c.f.
                # mdp_computePpolicyPRpolicy.m
632
                Rpolicy[ind] = self.R[aa][ind]
Steven Cordwell's avatar
Steven Cordwell committed
633
634
635
636
        # self.R cannot be sparse with the code in its current condition, but
        # it should be possible in the future. Also, if R is so big that its
        # a good idea to use a sparse matrix for it, then converting PRpolicy
        # from a dense to sparse matrix doesn't seem very memory efficient
637
638
        if type(self.R) is _sp.csr_matrix:
            Rpolicy = _sp.csr_matrix(Rpolicy)
Steven Cordwell's avatar
Steven Cordwell committed
639
640
641
        #self.Ppolicy = Ppolicy
        #self.Rpolicy = Rpolicy
        return (Ppolicy, Rpolicy)
642

643
    def _evalPolicyIterative(self, V0=0, epsilon=0.0001, max_iter=10000):
Steven Cordwell's avatar
Steven Cordwell committed
644
645
646
647
648
        # Evaluate a policy using iteration.
        #
        # Arguments
        # ---------
        # Let S = number of states, A = number of actions
649
650
        # P(SxSxA)  = transition matrix
        #    P could be an array with 3 dimensions or
Steven Cordwell's avatar
Steven Cordwell committed
651
652
        #    a cell array (1xS), each cell containing a matrix possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
653
        #    R could be an array with 3 dimensions (SxSxA) or
Steven Cordwell's avatar
Steven Cordwell committed
654
        #    a cell array (1xA), each cell containing a sparse matrix (SxS) or
655
        #    a 2D array(SxA) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
656
657
658
659
660
        # discount  = discount rate in ]0; 1[
        # policy(S) = a policy
        # V0(S)     = starting value function, optional (default : zeros(S,1))
        # epsilon   = epsilon-optimal policy search, upper than 0,
        #    optional (default : 0.0001)
661
        # max_iter  = maximum number of iteration to be done, upper than 0,
Steven Cordwell's avatar
Steven Cordwell committed
662
        #    optional (default : 10000)
663
        #
Steven Cordwell's avatar
Steven Cordwell committed
664
665
666
667
668
669
670
671
672
673
        # Evaluation
        # ----------
        # Vpolicy(S) = value function, associated to a specific policy
        #
        # Notes
        # -----
        # In verbose mode, at each iteration, displays the condition which
        # stopped iterations: epsilon-optimum value function found or maximum
        # number of iterations reached.
        #
674
675
676
        try:
            assert V0.shape in ((self.S, ), (self.S, 1), (1, self.S)), \
                "'V0' must be a vector of length S."
677
            policy_V = _np.array(V0).reshape(self.S)
678
        except AttributeError:
Steven Cordwell's avatar
Steven Cordwell committed
679
            if V0 == 0:
680
                policy_V = _np.zeros(self.S)
Steven Cordwell's avatar
Steven Cordwell committed
681
            else:
682
                policy_V = _np.array(V0).reshape(self.S)
683

684
        policy_P, policy_R = self._computePpolicyPRpolicy()
685

Steven Cordwell's avatar
Steven Cordwell committed
686
        if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
687
            print('    Iteration\t\t    V variation')
688

Steven Cordwell's avatar
Steven Cordwell committed
689
690
691
        itr = 0
        done = False
        while not done:
692
            itr += 1
693

694
            Vprev = policy_V
695
            policy_V = policy_R + self.discount * policy_P.dot(Vprev)
696

697
            variation = _np.absolute(policy_V - Vprev).max()
Steven Cordwell's avatar
Steven Cordwell committed
698
            if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
699
                print(('      %s\t\t      %s') % (itr, variation))
700

701
702
            # ensure |Vn - Vpolicy| < epsilon
            if variation < ((1 - self.discount) / self.discount) * epsilon:
Steven Cordwell's avatar
Steven Cordwell committed
703
704
                done = True
                if self.verbose:
705
                    print(_MSG_STOP_EPSILON_OPTIMAL_VALUE)
Steven Cordwell's avatar
Steven Cordwell committed
706
707
708
            elif itr == max_iter:
                done = True
                if self.verbose:
709
                    print(_MSG_STOP_MAX_ITER)
710

Steven Cordwell's avatar
Steven Cordwell committed
711
        self.V = policy_V
712

713
    def _evalPolicyMatrix(self):
Steven Cordwell's avatar
Steven Cordwell committed
714
715
        # Evaluate the value function of the policy using linear equations.
        #
716
        # Arguments
Steven Cordwell's avatar
Steven Cordwell committed
717
718
        # ---------
        # Let S = number of states, A = number of actions
719
        # P(SxSxA) = transition matrix
Steven Cordwell's avatar
Steven Cordwell committed
720
721
722
        #      P could be an array with 3 dimensions or a cell array (1xA),
        #      each cell containing a matrix (SxS) possibly sparse
        # R(SxSxA) or (SxA) = reward matrix
723
        #      R could be an array with 3 dimensions (SxSxA) or
Steven Cordwell's avatar
Steven Cordwell committed
724
        #      a cell array (1xA), each cell containing a sparse matrix (SxS) or
725
        #      a 2D array(SxA) possibly sparse
Steven Cordwell's avatar
Steven Cordwell committed
726
727
728
729
730
731
732
        # discount = discount rate in ]0; 1[
        # policy(S) = a policy
        #
        # Evaluation
        # ----------
        # Vpolicy(S) = value function of the policy
        #
733
        Ppolicy, Rpolicy = self._computePpolicyPRpolicy()
Steven Cordwell's avatar
Steven Cordwell committed
734
        # V = PR + gPV  => (I-gP)V = PR  => V = inv(I-gP)* PR
735
736
        self.V = _np.linalg.solve(
            (_sp.eye(self.S, self.S) - self.discount * Ppolicy), Rpolicy)
737

738
    def run(self):
Steven Cordwell's avatar
Steven Cordwell committed
739
740
        # Run the policy iteration algorithm.
        # If verbose the print a header
741
        if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
742
            print('  Iteration\t\tNumber of different actions')
Steven Cordwell's avatar
Steven Cordwell committed
743
        # Set up the while stopping condition and the current time
Steven Cordwell's avatar
Steven Cordwell committed
744
        done = False
745
        self.time = _time.time()
Steven Cordwell's avatar
Steven Cordwell committed
746
        # loop until a stopping condition is reached
Steven Cordwell's avatar
Steven Cordwell committed
747
        while not done:
748
            self.iter += 1
749
            # these _evalPolicy* functions will update the classes value
Steven Cordwell's avatar
Steven Cordwell committed
750
            # attribute
Steven Cordwell's avatar
Steven Cordwell committed
751
            if self.eval_type == "matrix":
752
                self._evalPolicyMatrix()
Steven Cordwell's avatar
Steven Cordwell committed
753
            elif self.eval_type == "iterative":
754
                self._evalPolicyIterative()
Steven Cordwell's avatar
Steven Cordwell committed
755
756
            # This should update the classes policy attribute but leave the
            # value alone
757
            policy_next, null = self._bellmanOperator()
758
            del null
Steven Cordwell's avatar
Steven Cordwell committed
759
760
            # calculate in how many places does the old policy disagree with
            # the new policy
761
            n_different = (policy_next != self.policy).sum()
Steven Cordwell's avatar
Steven Cordwell committed
762
            # if verbose then continue printing a table
763
            if self.verbose:
Steven Cordwell's avatar
Steven Cordwell committed
764
                print(('    %s\t\t  %s') % (self.iter, n_different))
765
            # Once the policy is unchanging of the maximum number of
Steven Cordwell's avatar
Steven Cordwell committed
766
            # of iterations has been reached then stop
767
            if n_different == 0:
Steven Cordwell's avatar
Steven Cordwell committed
768
                done = True
769
                if self.verbose:
770
                    print(_MSG_STOP_UNCHANGING_POLICY)
771
            elif (self.iter == self.max_iter):
772
                done = True
773
                if self.verbose:
774
                    print(_MSG_STOP_MAX_ITER)
775
776
            else:
                self.policy = policy_next
Steven Cordwell's avatar
Steven Cordwell committed
777
        # update the time to return th computation time
778
        self.time = _time.time() - self.time
Steven Cordwell's avatar
Steven Cordwell committed
779
        # store value and policy as tuples
780
781
        self.V = tuple(self.V.tolist())
        self.policy = tuple(self.policy.tolist())
Steven Cordwell's avatar
Steven Cordwell committed
782

783
class PolicyIterationModified(PolicyIteration):
784

785
    """A discounted MDP  solved using a modifified policy iteration algorithm.
786

Steven Cordwell's avatar
Steven Cordwell committed
787
788
    Arguments
    ---------
789
790
791
792
793
794
795
796
797
    transitions : array
        Transition probability matrices. See the documentation for the ``MDP``
        class for details.
    reward : array
        Reward matrices or vectors. See the documentation for the ``MDP`` class
        for details.
    discount : float
        Discount factor. See the documentation for the ``MDP`` class for
        details.
Steven Cordwell's avatar
Steven Cordwell committed
798
799
800
801
    epsilon : float, optional
        Stopping criterion. See the documentation for the ``MDP`` class for
        details. Default: 0.01.
    max_iter : int, optional
802
        Maximum number of iterations. See the documentation for the ``MDP``
Steven Cordwell's avatar
Steven Cordwell committed
803
        class for details. Default is 10.
804

Steven Cordwell's avatar
Steven Cordwell committed
805
806
    Data Attributes
    ---------------
Steven Cordwell's avatar
Steven Cordwell committed
807
    V : tuple
808
        value function
Steven Cordwell's avatar
Steven Cordwell committed
809
810
811
812
813
814
    policy : tuple
        optimal policy
    iter : int
        number of done iterations
    time : float
        used CPU time