Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Zahra Rajabi
pymdptoolbox
Commits
274b9297
Commit
274b9297
authored
Feb 04, 2013
by
Steven Cordwell
Browse files
edit some docstrings
parent
4459b331
Changes
1
Hide whitespace changes
Inline
Side-by-side
mdp.py
View file @
274b9297
# -*- coding: utf-8 -*-
"""
Markov Decision Process (MDP) Toolbox
"""Markov Decision Process (MDP) Toolbox
=====================================
The MDP toolbox provides classes and functions for the resolution of
...
...
@@ -11,7 +10,7 @@ Available classes
MDP
Base Markov decision process class
FiniteHorizon
F
inite horizon MDP
Backwards induction f
inite horizon MDP
LP
Linear programming MDP
PolicyIteration
...
...
@@ -362,11 +361,41 @@ def exampleForest(S=3, r1=4, r2=2, p=0.1):
forest for wildlife and second to make money selling cut wood.
Each year there is a probability ``p`` that a fire burns the forest.
Here is the problem is modelled.
Here is
how
the problem is modelled.
Let {1, 2 . . . ``S`` } be the states of the forest, with ``S`` being the
oldest. Let 'Wait' be action 1 and 'Cut' action 2.
After a fire, the forest is in the youngest state, that is state 1.
The transition matrix P of the problem can then be defined as follows.
The transition matrix P of the problem can then be defined as follows::
| p 1-p 0.......0 |
| . 0 1-p 0....0 |
P[1,:,:] = | . . 0 . |
| . . . |
| . . 1-p |
| p 0 0....0 1-p |
| 1 0..........0 |
| . . . |
P[2,:,:] = | . . . |
| . . . |
| . . . |
| 1 0..........0 |
The reward matrix R is defined as follows::
| 0 |
| . |
R[:,1] = | . |
| . |
| 0 |
| r1 |
| 0 |
| 1 |
R[:,2] = | . |
| . |
| 1 |
| r2 |
Parameters
---------
...
...
@@ -392,11 +421,13 @@ def exampleForest(S=3, r1=4, r2=2, p=0.1):
Examples
--------
>>> import mdp
>>> P, R = mdp.exampleForest()
>>> P
array([[[ 0.1, 0.9, 0. ],
[ 0.1, 0. , 0.9],
[ 0.1, 0. , 0.9]],
<BLANKLINE>
[[ 1. , 0. , 0. ],
[ 1. , 0. , 0. ],
[ 1. , 0. , 0. ]]])
...
...
@@ -447,17 +478,23 @@ def exampleRand(S, A, is_sparse=False, mask=None):
Parameters
----------
S : number of states (> 0)
A : number of actions (> 0)
is_sparse : false to have matrices in plain format, true to have sparse
matrices optional (default false).
mask : matrix with 0 and 1 (0 indicates a place for a zero
probability), optional (SxS) (default, random)
S : int
number of states (> 0)
A : int
number of actions (> 0)
is_sparse : logical, optional
false to have matrices in plain format, true to have sparse
matrices (default false).
mask : array or None, optional
matrix with 0 and 1 (0 indicates a place for a zero
probability), (SxS) (default, random)
Returns
----------
P : transition probability matrix (SxSxA)
R : reward matrix (SxSxA)
-------
out : tuple
``out[1]`` contains the transition probability matrix P with a shape of
(A, S, S). ``out[2]`` contains the reward matrix R with a shape of
(S, A).
Examples
--------
...
...
@@ -541,7 +578,50 @@ def getSpan(W):
class
MDP
(
object
):
"""A Markov Decision Problem."""
"""A Markov Decision Problem.
Parameters
----------
transitions : array
transition probability matrices
reward : array
reward matrices
discount : float or None
discount factor
epsilon : float or None
stopping criteria
max_iter : int or None
maximum number of iterations
Attributes
----------
P : array
Transition probability matrices
R : array
Reward matrices
V : list
Value function
discount : float
b
max_iter : int
a
policy : list
a
time : float
a
verbose : logical
a
Methods
-------
iterate
To be implemented in child classes, raises exception
setSilent
Turn the verbosity off
setVerbose
Turn the verbosity on
"""
def
__init__
(
self
,
transitions
,
reward
,
discount
,
epsilon
,
max_iter
):
"""Initialise a MDP based on the input parameters."""
...
...
@@ -693,11 +773,12 @@ class MDP(object):
class
FiniteHorizon
(
MDP
):
"""A MDP solved using the finite-horizon
algorithm with
backwards induction.
"""A MDP solved using the finite-horizon backwards induction
algorithm
.
Arguments
---------
Let S = number of states, A = number of actions
Parameters
----------
P(SxSxA) = transition matrix
P could be an array with 3 dimensions ora cell array (1xA),
each cell containing a matrix (SxS) possibly sparse
...
...
@@ -708,8 +789,12 @@ class FiniteHorizon(MDP):
discount = discount factor, in ]0, 1]
N = number of periods, upper than 0
h(S) = terminal reward, optional (default [0; 0; ... 0] )
Evaluation
Attributes
----------
Methods
-------
V(S,N+1) = optimal value function
V(:,n) = optimal value function at stage n
with stage in 1, ..., N
...
...
@@ -724,6 +809,19 @@ class FiniteHorizon(MDP):
-----
In verbose mode, displays the current stage and policy transpose.
Examples
--------
>>> import mdp
>>> P, R = mdp.exampleForest()
>>> fh = mdp.FiniteHorizon(P, R, 0.9, 3)
>>> fh.V
array([[ 2.6973, 0.81 , 0. , 0. ],
[ 5.9373, 3.24 , 1. , 0. ],
[ 9.9373, 7.24 , 4. , 0. ]])
>>> fh.policy
array([[0, 0, 0],
[0, 0, 1],
[0, 0, 0]])
"""
def
__init__
(
self
,
transitions
,
reward
,
discount
,
N
,
h
=
None
):
...
...
@@ -1448,6 +1546,22 @@ class RelativeValueIteration(MDP):
Examples
--------
>>> import mdp
>>> P, R = exampleForest()
>>> rvi = mdp.RelativeValueIteration(P, R, 0.96)
>>> rvi.iterate()
>>> rvi.average_reward
2.4300000000000002
>>> rvi.policy
(0, 0, 0)
>>> import mdp
>>> import numpy as np
>>> P = np.array([[[0.5, 0.5],[0.8, 0.2]],[[0, 1],[0.1, 0.9]]])
>>> R = np.array([[5, 10], [-1, 2]])
>>> vi = mdp.RelativeValueIteration(P, R, 0.9)
>>> rvi.iterate()
>>> rvi.V
"""
...
...
@@ -1527,23 +1641,29 @@ class ValueIteration(MDP):
Parameters
----------
P : transition matrix
P : array
transition matrix
P could be a numpy ndarray with 3 dimensions (AxSxS) or a
numpy ndarray of dytpe=object with 1 dimenion (1xA), each
element containing a numpy ndarray (SxS) or scipy sparse matrix.
R : reward matrix
R : array
reward matrix
R could be a numpy ndarray with 3 dimensions (AxSxS) or numpy
ndarray of dtype=object with 1 dimension (1xA), each element
containing a sparse matrix (SxS). R also could be a numpy
ndarray with 2 dimensions (SxA) possibly sparse.
discount : discount rate
discount : float
discount rate
Greater than 0, less than or equal to 1. Beware to check conditions of
convergence for discount = 1.
epsilon : epsilon-optimal policy search
epsilon : float, optional
epsilon-optimal policy search
Greater than 0, optional (default: 0.01).
max_iter : maximum number of iterations to be done
max_iter : int, optional
maximum number of iterations to be done
Greater than 0, optional (default: computed)
initial_value : starting value function
initial_value : array, optional
starting value function
optional (default: zeros(S,1)).
Data Attributes
...
...
@@ -1583,13 +1703,13 @@ class ValueIteration(MDP):
False
>>> vi.iterate()
>>> vi.V
array([
5.93215488,
9.38815488,
13.38815488
]
)
(
5.93215488, 9.38815488, 13.38815488)
>>> vi.policy
array([
0, 0, 0
]
)
(
0, 0, 0)
>>> vi.iter
4
>>> vi.time
0.00
2871990203857422
0.00
09911060333251953
>>> import mdp
>>> import numpy as np
...
...
@@ -1598,13 +1718,13 @@ class ValueIteration(MDP):
>>> vi = mdp.ValueIteration(P, R, 0.9)
>>> vi.iterate()
>>> vi.V
array([
40.04862539,
33.65371176
]
)
(
40.04862539
271682
, 33.6537117
596754
6)
>>> vi.policy
array([
1, 0
]
)
(
1, 0)
>>> vi.iter
26
>>> vi.time
0.0
10202884674072266
0.0
066509246826171875
>>> import mdp
>>> import numpy as np
...
...
@@ -1616,9 +1736,9 @@ class ValueIteration(MDP):
>>> vi = mdp.ValueIteration(P, R, 0.9)
>>> vi.iterate()
>>> vi.V
array([
40.04862539,
33.65371176
]
)
(
40.04862539
271682
, 33.6537117
596754
6)
>>> vi.policy
array([
1, 0
]
)
(
1, 0)
"""
...
...
@@ -1835,3 +1955,7 @@ class ValueIterationGS(ValueIteration):
self
.
V
=
tuple
(
self
.
V
.
getA1
().
tolist
())
self
.
policy
=
tuple
(
self
.
policy
)
if
__name__
==
"__main__"
:
import
doctest
doctest
.
testmod
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment