Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Zahra Rajabi
pymdptoolbox
Commits
361b42e0
Commit
361b42e0
authored
Jan 21, 2013
by
Steven Cordwell
Browse files
changed PolicyIteration to be more like original
parent
60e89bf1
Changes
2
Hide whitespace changes
Inline
Side-by-side
mdp.py
View file @
361b42e0
...
...
@@ -699,68 +699,54 @@ class PolicyIteration(MDP):
"""
def
__init__
(
self
,
transitions
,
reward
,
discount
,
epsilon
=
0.01
,
max_iter
=
1000
,
initial_valu
e
=
0
):
def
__init__
(
self
,
transitions
,
reward
,
discount
,
policy0
,
max_iter
=
1000
,
eval_typ
e
=
0
):
""""""
MDP
.
__init__
(
self
)
self
.
check
(
transitions
,
reward
)
self
.
S
=
transitions
.
shape
[
1
]
self
.
A
=
transitions
.
shape
[
0
]
self
.
P
=
transitions
if
(
size
(
policy0
,
1
)
!=
S
or
any
(
mod
(
policy0
,
1
))
or
any
(
policy0
<
1
)
or
any
(
policy0
>
S
)):
raise
ValueError
(
'MDP Toolbox ERROR: policy0 must a (1xS) vector with integer from 1 to S'
)
self
.
R
=
reward
#self.computePR(transitions, reward)
if
(
initial_value
==
0
):
self
.
value
=
zeros
((
self
.
S
))
#self.value = matrix(zeros((self.S, 1)))
else
:
if
(
len
(
initial_value
)
!=
self
.
S
):
raise
ValueError
(
"The initial value must be length S"
)
self
.
value
=
matrix
(
initial_value
)
MDP
.
__init__
(
self
,
transitions
,
reward
,
discount
,
max_iter
)
self
.
policy
=
randi
(
0
,
self
.
A
,
self
.
S
)
self
.
discount
=
discount
self
.
max_iter
=
max_iter
self
.
value
=
matrix
(
zeros
((
self
.
S
,
1
)))
self
.
iter
=
0
# initialise the policy to the one which maximises the expected
# immediate reward
self
.
bellmanOperator
()
def
evalPolicyMatrix
(
self
):
""""""
pass
def
iterate
(
self
):
""""""
done
=
False
stop_criterion
=
0.01
if
self
.
verbose
:
print
(
' Iteration Number_of_different_actions'
)
self
.
time
=
time
()
while
not
done
:
stop
=
False
while
not
stop
:
change
=
0
for
s
in
range
(
self
.
S
):
v
=
self
.
value
[
s
]
a
=
self
.
policy
[
s
]
self
.
value
[
s
]
=
(
self
.
P
[
a
,
s
,
:]
*
(
self
.
R
[
a
,
s
,
:]
+
(
self
.
discount
*
self
.
value
))).
sum
()
change
=
max
(
change
,
abs
(
v
-
self
.
value
[
s
]))
if
change
<
stop_criterion
:
stop
=
True
self
.
iter
=
self
.
iter
+
1
policy_stable
=
True
for
s
in
range
(
self
.
S
):
b
=
self
.
policy
[
s
]
self
.
policy
[
s
]
=
(
self
.
P
[:,
s
,
:]
*
(
self
.
R
[:,
s
,
:]
+
(
self
.
discount
*
self
.
value
))).
sum
(
1
).
argmax
()
if
b
!=
self
.
policy
[
s
]:
policy_stable
=
False
if
eval_type
==
0
:
self
.
value
=
self
.
evalPolicyMatrix
()
else
:
self
.
value
=
self
.
evalPolicyIterative
()
if
policy_stable
:
policy_prev
=
self
.
policy
self
.
bellmanOperator
()
n_different
=
(
policy
!=
policy_prev
).
sum
()
if
self
.
verbose
:
print
(
' %s %s'
)
%
(
self
.
iter
,
n_different
)
if
(
policy
==
policy_prev
).
all
()
or
(
self
.
iter
==
self
.
max_iter
):
done
=
True
self
.
time
=
time
()
-
self
.
time
# store value and policy as tuples
self
.
value
=
tuple
(
array
(
self
.
value
).
reshape
(
self
.
S
).
tolist
())
self
.
policy
=
tuple
(
array
(
self
.
policy
).
reshape
(
self
.
S
).
tolist
())
...
...
test_mdptoolbox.py
View file @
361b42e0
...
...
@@ -5,89 +5,90 @@ Created on Sun May 27 23:16:57 2012
@author: -
"""
from
mdp
import
exampleForest
,
exampleRand
,
MDP
,
PolicyIteration
,
ValueIteration
from
numpy
import
array
,
eye
,
matrix
,
zeros
from
numpy.random
import
rand
from
scipy.sparse
import
eye
as
speye
from
scipy.sparse
import
csr_matrix
as
sparse
from
mdp
import
exampleForest
,
exampleRand
,
PolicyIteration
,
ValueIteration
from
numpy
import
array
#from numpy import array, eye, matrix, zeros
#from numpy.random import rand
#from scipy.sparse import eye as speye
#from scipy.sparse import csr_matrix as sparse
#from scipy.stats.distributions import poisson
inst
=
MDP
()
#
inst = MDP()
#
STATES
=
10
ACTIONS
=
3
# check: square, stochastic and non-negative
def
test_check_square_stochastic_nonnegative_array
():
P
=
zeros
((
ACTIONS
,
STATES
,
STATES
))
R
=
zeros
((
STATES
,
ACTIONS
))
for
a
in
range
(
ACTIONS
):
P
[
a
,
:,
:]
=
eye
(
STATES
)
R
[:,
a
]
=
rand
(
STATES
)
inst
.
check
(
P
,
R
)
# check: square, stochastic and non-negative object arrays
def
test_check_square_stochastic_nonnegative_object_array
():
P
=
zeros
((
ACTIONS
,
),
dtype
=
object
)
R
=
zeros
((
STATES
,
ACTIONS
))
for
a
in
range
(
ACTIONS
):
P
[
a
]
=
eye
(
STATES
)
R
[:,
a
]
=
rand
(
STATES
)
inst
.
check
(
P
,
R
)
def
test_check_square_stochastic_nonnegative_object_matrix
():
P
=
zeros
((
ACTIONS
,
),
dtype
=
object
)
R
=
zeros
((
STATES
,
ACTIONS
))
for
a
in
range
(
ACTIONS
):
P
[
a
]
=
matrix
(
eye
(
STATES
))
R
[:,
a
]
=
rand
(
STATES
)
inst
.
check
(
P
,
R
)
def
test_check_square_stochastic_nonnegative_object_sparse
():
P
=
zeros
((
ACTIONS
,
),
dtype
=
object
)
R
=
zeros
((
STATES
,
ACTIONS
))
for
a
in
range
(
ACTIONS
):
P
[
a
]
=
speye
(
STATES
,
STATES
).
tocsr
()
R
[:,
a
]
=
rand
(
STATES
)
inst
.
check
(
P
,
R
)
# checkSquareStochastic: square, stochastic and non-negative
def
test_checkSquareStochastic_square_stochastic_nonnegative_array
():
P
=
rand
(
STATES
,
STATES
)
for
s
in
range
(
STATES
):
P
[
s
,
:]
=
P
[
s
,
:]
/
P
[
s
,
:].
sum
()
assert
inst
.
checkSquareStochastic
(
P
)
==
None
def
test_checkSquareStochastic_square_stochastic_nonnegative_matrix
():
P
=
rand
(
STATES
,
STATES
)
for
s
in
range
(
STATES
):
P
[
s
,
:]
=
P
[
s
,
:]
/
P
[
s
,
:].
sum
()
P
=
matrix
(
P
)
assert
inst
.
checkSquareStochastic
(
P
)
==
None
def
test_checkSquareStochastic_square_stochastic_nonnegative_sparse
():
P
=
rand
(
STATES
,
STATES
)
for
s
in
range
(
STATES
):
P
[
s
,
:]
=
P
[
s
,
:]
/
P
[
s
,
:].
sum
()
P
=
sparse
(
P
)
assert
inst
.
checkSquareStochastic
(
P
)
==
None
# checkSquareStochastic: eye
def
test_checkSquareStochastic_eye_array
():
P
=
eye
(
STATES
)
assert
inst
.
checkSquareStochastic
(
P
)
==
None
def
test_checkSquareStochastic_eye_matrix
():
P
=
matrix
(
eye
(
STATES
))
assert
inst
.
checkSquareStochastic
(
P
)
==
None
def
test_checkSquareStochastic_eye_sparse
():
P
=
speye
(
STATES
,
STATES
).
tocsr
()
assert
inst
.
checkSquareStochastic
(
P
)
==
None
#
#
# check: square, stochastic and non-negative
#
#
def test_check_square_stochastic_nonnegative_array():
#
P = zeros((ACTIONS, STATES, STATES))
#
R = zeros((STATES, ACTIONS))
#
for a in range(ACTIONS):
#
P[a, :, :] = eye(STATES)
#
R[:, a] = rand(STATES)
#
inst.check(P, R)
#
#
# check: square, stochastic and non-negative object arrays
#
#
def test_check_square_stochastic_nonnegative_object_array():
#
P = zeros((ACTIONS, ), dtype=object)
#
R = zeros((STATES, ACTIONS))
#
for a in range(ACTIONS):
#
P[a] = eye(STATES)
#
R[:, a] = rand(STATES)
#
inst.check(P, R)
#
#
def test_check_square_stochastic_nonnegative_object_matrix():
#
P = zeros((ACTIONS, ), dtype=object)
#
R = zeros((STATES, ACTIONS))
#
for a in range(ACTIONS):
#
P[a] = matrix(eye(STATES))
#
R[:, a] = rand(STATES)
#
inst.check(P, R)
#
#
def test_check_square_stochastic_nonnegative_object_sparse():
#
P = zeros((ACTIONS, ), dtype=object)
#
R = zeros((STATES, ACTIONS))
#
for a in range(ACTIONS):
#
P[a] = speye(STATES, STATES).tocsr()
#
R[:, a] = rand(STATES)
#
inst.check(P, R)
#
#
# checkSquareStochastic: square, stochastic and non-negative
#
#
def test_checkSquareStochastic_square_stochastic_nonnegative_array():
#
P = rand(STATES, STATES)
#
for s in range(STATES):
#
P[s, :] = P[s, :] / P[s, :].sum()
#
assert inst.checkSquareStochastic(P) == None
#
#
def test_checkSquareStochastic_square_stochastic_nonnegative_matrix():
#
P = rand(STATES, STATES)
#
for s in range(STATES):
#
P[s, :] = P[s, :] / P[s, :].sum()
#
P = matrix(P)
#
assert inst.checkSquareStochastic(P) == None
#
#
def test_checkSquareStochastic_square_stochastic_nonnegative_sparse():
#
P = rand(STATES, STATES)
#
for s in range(STATES):
#
P[s, :] = P[s, :] / P[s, :].sum()
#
P = sparse(P)
#
assert inst.checkSquareStochastic(P) == None
#
#
# checkSquareStochastic: eye
#
#
def test_checkSquareStochastic_eye_array():
#
P = eye(STATES)
#
assert inst.checkSquareStochastic(P) == None
#
#
def test_checkSquareStochastic_eye_matrix():
#
P = matrix(eye(STATES))
#
assert inst.checkSquareStochastic(P) == None
#
#
def test_checkSquareStochastic_eye_sparse():
#
P = speye(STATES, STATES).tocsr()
#
assert inst.checkSquareStochastic(P) == None
# exampleForest
...
...
@@ -103,9 +104,9 @@ def test_exampleForest_shape():
[
0
,
1
],
[
4
,
2
]])).
all
()
def
test_exampleForest_check
():
P
,
R
=
exampleForest
(
10
,
5
,
3
,
0.2
)
inst
.
check
(
P
,
R
)
#
def test_exampleForest_check():
#
P, R = exampleForest(10, 5, 3, 0.2)
#
inst.check(P, R)
# exampleRand
...
...
@@ -114,18 +115,18 @@ def test_exampleRand_dense_shape():
assert
(
P
.
shape
==
(
ACTIONS
,
STATES
,
STATES
))
assert
(
R
.
shape
==
(
ACTIONS
,
STATES
,
STATES
))
def
test_exampleRand_dense_check
():
P
,
R
=
exampleRand
(
STATES
,
ACTIONS
)
assert
inst
.
check
(
P
,
R
)
==
None
#
def test_exampleRand_dense_check():
#
P, R = exampleRand(STATES, ACTIONS)
#
assert inst.check(P, R) == None
def
test_exampleRand_sparse_shape
():
P
,
R
=
exampleRand
(
STATES
,
ACTIONS
,
is_sparse
=
True
)
assert
(
P
.
shape
==
(
ACTIONS
,
))
assert
(
R
.
shape
==
(
ACTIONS
,
))
def
test_exampleRand_sparse_check
():
P
,
R
=
exampleRand
(
STATES
,
ACTIONS
,
is_sparse
=
True
)
assert
inst
.
check
(
P
,
R
)
==
None
#
def test_exampleRand_sparse_check():
#
P, R = exampleRand(STATES, ACTIONS, is_sparse=True)
#
assert inst.check(P, R) == None
# ValueIteration
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment